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Comparisons of growth rates of popu-
lations and species are important in 
fi sheries science for a range of reasons 
that vary with the context of each 
study. Most studies of fi sh growth have 
focused on the practical issues of the 
most appropriate way of comparing 
growth rather than on recognizing that 
there are several methods for making 
these comparisons and that the con-
clusions will differ depending on the 
method chosen.

Francis (1996) discussed the prob-
lem of how to compare different growth 
rates or growth curves. He suggested 
six plausible ways of making a com-
parison and suggested that the rate 
at which the asymptotic size is 
approached was the most natural 
method of comparing growth (his 
method 6). He illustrated the differ-
ences between the methods by compar-
ing von Bertalanffy growth equations 
that are based on fi xed growth para-
meters and that assumed that growth 
parameters are known and there are 
no associated uncertainties. However, 
in practice, the growth parameters 
are often estimated, and therefore are 
random variables. Consequently, the 
corresponding growth curves are also 
subject to variations. 

For comparison with Francis’s work, 
we will assume that growth for a spe-
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cies is adequately described by the von 
Bertalanffy equation with t0 = 0, as

 L(t; β) = l∞ (1 – e–kt), (1)

in which β = (k, l∞) are growth parameters. 

Here l(t) is the mean length at age 
t. If β̂ 1 and β̂ 2 are two estimates of 
β, how do we test whether the corre-
sponding two growth curves are the 
same? The traditional way is to com-
pare individual parameters and fi nd 
out which ones are signifi cantly differ-
ent. However, the parameter estimates, 
l∞ and k, are often strongly correlated 
(Kirkwood and Somers, 1984; Wang 
and Thomas, 1995). It may therefore be 
more appropriate to compare biological 
reference points (e.g. size at one year of 
age) rather than growth parameters in 
the models (Wang and Thomas, 1995). 
Growth comparisons may, in general, 
be classifi ed into two types: within spe-
cies and between species. In practice, 
the following comparisons may be of 
interest:

1 Comparison of the growth rates for 
the same species, say E, in which 
two sets of growth parameter esti-
mates, β̂ 1 and β̂ 2, are obtained 
from different time periods, differ-
ent areas or sexes. 

2 Comparison of growth rates for 
two different species to see which 
one grows faster. 

As mentioned earlier, Francis (1996) 
considered six methods for comparing 
growth. For the within-species compar-
ison, it seems all six methods are valid. 
However, these methods compare dif-
ferent characteristics of growth and 
therefore may reach different conclu-
sions. For example, if we obtain β̂ 1 = 
(0.5,50) from area A and β̂ 2 = (0.4,60) 
from area B, we would conclude that 
species E does not grow as large in area 
A as in area B and that the k value 
(rate at which the asymptotic length is 
approached) in area A is larger than 
that in area B.

For between-species comparisons, we 
agree with Francis (1996) that his 
method 6 (k value comparison) is prob-
ably the most appropriate, especially 
in the context of comparing growth 
between, for example, herring and 
orange roughy. However, in some cases, 
comparing absolute growth rates at 
age or length between species could be 
of practical interest. 

For example, if you are interested 
in choosing one of two species of fi sh 
or crustacean to farm and these two 
species look alike and have the same 
commercial value, it is more economi-
cal to farm the faster-growing species 
to shorten the time taken to reach 
market size. In Australia, the tiger 
prawn P. esculentus has a larger k 
value than the very similar P. semis-
ulcatus (Somers and Kirkwood 1991), 
but P. semisulcatus has the potential of 
reaching a commercial size sooner (Fig. 
1). Therefore, we would conclude that 
P. semisulcatus grows faster than P. 
esculentus in this context, and a com-
parison based only on k values may be 
misleading.

Therefore, in this note we will extend 
Francis’s theoretical study by develop-
ing procedures for establishing statisti-
cal hypotheses for the six methods and 
suggest test statistics for comparing 
growth curves. We will demonstrate 
the differences in conclusions that can 
occur among the methods with data on 
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Figure 1
A plot of the von Bertalanffy growth curves for male and female P. semisulcatus 
(P. semi) and P. esculentus (P. esc) that are being compared by the six methods identi-
fi ed by Francis (1996).

growth rates of two species of tiger prawn (shrimp) from 
northern Australia.

Methods

Overall hypothesis tests on two sets of parameters

Suppose we are interested in testing the hypothesis that 
the underlying growth curves corresponding to the two 
sets of parameter estimates β̂ 1 = (k1, l∞1) and β̂ 2 = (k2, l∞2) 
are the same. According to the large-sample theory, it is 
quite reasonable in most cases to assume that β̂ 1 and β̂ 2 
are normally distributed. To be general, we will allow β̂ 1 
to be correlated with β̂ 2. In notation,

  (1)

Note that if β̂ 1 and β̂ 2 are estimated from different data 
sets, they may be assumed to be independent, because both 

β̂ 1 and β̂ 2 are estimates and β̂ 1– β̂ 2 is approximately 
multivariate normal. To test whether the two growth pat-
terns determined by β̂ 1 and β̂ 2 are the same or not, we 
can use the generalised T2-statistic (Anderson, 1971):
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in which V = the covariance of β̂ 1 – β̂ 2. 

The distribution of the T2-statistic is approximately chi-
squared with 2 degrees of freedom, χ2

2 . If the signifi cance 
level is α, the corresponding critical value is χ2

2 (α).
In many cases, we are interested in the slope of the 

growth curve (growth rate) rather than the curve itself. For 
example, we may be interested in comparing the growth 
rate during a particular age interval. Owing to natural 
mortality or fi shing mortality, the period outside of this 
age range may be of no practical interest. In this case, it 
is may be more appropriate to consider the growth pat-
terns over a specifi ed age or length range rather than the 
whole range, which would put more emphasis (weight) on 
the asymptotic length in the comparison.
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Tests to compare two growth equations Let g be a growth 
function of (k, l∞) that we are interested in comparing. 
Table 1 lists the six g functions corresponding to the six 
methods identifi ed by Francis (1996). For a given function 
g, we will test g(β1) = g(β2) versus g(β1) ≠ g(β2) or g(β1) 
> g(β2), depending on the context. Standard normal tests 
may be used for a specifi ed g function. The test will rely on 
the properties of D≈g(β̂1)  –  g(β̂2). Let E(D) and V(D) be the 
corresponding expectation and variance of D when β is the 
true parameter. Under the null hypothesis, g(β1) = g(β2), 
and using standard Taylor series expansion, we can work 
out analytic expressions of E(D) and V(D). Some pooled 
estimates of β may be required to input to E(D) and V(D) 
to obtain approximate values of E(D) and V(D). We can 
obtain E(D) from Eg(β̂1) – Eg(β̂2) and

 E g g f f f( ˆ) ( ) ,β β σ σ σ( ) ≈ + + +( )1
2

211 11
2

12 12 22 22
2  (3)

in which f values are from the second derivative of g with 
respect to β (Table 1) and
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The variance of D can be obtained from

 V D X X X X X XT T T( ) ,≈ + −1 1 1 2 2 2 1 12 22Σ Σ Σ  (5)

in which Xi = the gradient or fi rst derivative of gi (Table 
1); and 

 Σ’s = the components of the covariance defi ned 
earlier. 

Note that the last term disappears if β̂1 and β̂2 are 
independent of each other. There are a few possible ways 
to obtain the approximate signifi cance level, P. However, 
the most widely used method assumes D is normally dis-
tributed. Then we can use the z-test, which is based on the 
normal approximation for large sample sizes. For a one-
sided test g(β1) = g(β2) vs. g(β1) > g(β2)
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where Φ = the standard normal distribution function.

For a two-sided test, we have
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If we are interested in the growth for a range of ages 
(tmin, tmax), or the sizes (lmin, lmax), we may consider the in-

Table 1
The six growth models g(β) that correspond to methods of comparing mean growth of two species or populations in Francis (1996) 
and their fi rst X

dg
d

=
β

  and second F
dg
d

=
β 2  derivatives assuming β~(β0,Σ).

Method g(β) X F 

1 Comparison of lengths 
 at each age  

2 Comparison of absolute 
 growth rates at each age

3 Comparison of absolute 
 growth rates at each length

4 Comparison of relative 
 growth rates at each age

5  Comparison of relative 
 growth rates at each length

6 Comparison of rates at which the 
 asymptotic size is approached 
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Table 2
The von Bertalanffy growth parameter estimates of Penaeus esculentus and P. semisulcatus from the Gulf of Carpentaria, northern 
Australia, used in growth comparisons between sexes of each species and between the two species for the same sex. The unbiased 
estimates were obtained by the equation of Wang (1998) and based on tagged prawn data from Somers and Kirkwood (1991).

Species Sex n l∞ ± SE (mm) k ± SE (per yr) Cov (l∞, k)

P. esculentus M 333 35.6 ± 0.3 2.8 ± 0.2 –0.0565
 F 224 44.7 ± 1.2 2.6 ± 0.3 –0.395 

P. semisulcatus M 159 38.6 ± 0.5 2.6 ± 0.2 –0.0886
 F 204 54.9 ± 1.7 1.8 ± 0.2 –0.2788

tegrated squared difference over the specifi ed range. For 
example, if g1 = λ1e–k1t and g2 = λ2e–k2t, in which λ1 = k2l∞1 
and λ2 = k2l∞2,we will rely on 

D g t g t dt
t

t

= −( )∫ 1 2( ) ( ) .
min

max

The corresponding expectation and variance can also be 
approximated by the delta method. 

We then apply each method to comparisons of the growth 
of males and females of two species of tiger prawn caught 
during tagging studies in northern Australia (Somers and 
Kirkwood 1991). We will consider two scenarios: 1) growth 
at age 0.5 yr (for methods 1, 2, and 4) or growth at length 
30 mm (for methods 3 and 5); 2) growth at age one yr (for 
methods1, 2, and 4) or growth at length 35 mm (for methods 
3 and 5). In order to verify that our test assumption that D 
was normally distributed, we obtained frequency plots for 
the bootstrapped estimates of the growth parameters.

Results

We fi rst bootstrapped the parameter estimates for each 
group to assess whether our assumption that the para-
meters were normally distributed was valid. The plot for 
male P. semisulcatus showed that there was little evi-
dence of skewness in our estimates (Fig. 2). Plots for other 
groups are similar and not shown here. The t tests pro-
posed in this paper, although based on normal distribu-
tions, are well known to be robust to violation to normality 
(which is why they are also known as “robust” test in sta-
tistics). On the other hand, the proposed tests rely only on 
mean and covariance estimates and the covariance matrix 
is often obtained from asymptotic distribution (normal) of 
the estimates in nonlinear regression.

We tested for the overall signifi cance of each comparison 
before proceeding with testing the six methods. All were 
highly signifi cant (P<<0.00001) and T2 statistics ranged 
from 43.2 for the comparison of P. semisulcatus females 
versus P. esculentus females to 385.7 for P. esculentus 
males versus P. semisulcatus females. Given that the over-
all growth curves differed among species, then it is reason-
able to then look further at the growth rates yielded by the 
different methods.

The growth models for the six methods of comparing 
growth and their fi rst and second derivatives differed 
between methods (Table 1). The growth parameters used 
in the comparison show apparent differences in the size of 
both l∞ and k among the species and sexes (Wang, 1998). 
These differences in the absolute value of each parameter 
translate into quite large differences in the shape of the 
growth curves (Fig. 1). The effect is most striking for 
Penaeus semisulcatus, but does growth differ? Is it affected 
if we choose a particular length or age? 

The results of tests from the six methods are shown in 
Table 2. The difference in lengths between P. esculentus 
and P. semisulcatus at the age of 0.5 yr is not signifi cant for 
either males or females (in method 1 in Table 2), but the 
difference becomes very signifi cant at age 1 yr. This result 
is consistent with the plot in Figure 1. However, the con-
clusion is reversed when comparing growth rate (method 
2 in Table 2) instead of length. The relative growth rates at 
either age (0.5 yr or 1 yr) for P. esculentus do not differ sig-
nifi cantly between males and females (method 4), whereas 
the rates at length 30 mm or 35 mm differ signifi cantly. 
This is also biologically plausible because the growth rate 
at length 35 mm is very close to zero for P. esculentus 
males (the asymptotic size is only 35.6 mm) and there is 
a substantial growth to be gained for females (the asymp-
totical size is 44.7 mm). For method 6, the comparion is 
independent of specifi ed length or age (two scenarios give 
the same results). 

In prawn farms, P. esculentus and P. semisulcatus are 
harvested after 6 or 12 months, depending on the circum-
stances, such as the farmer’s need to increase the number 
of generations within the growing season at higher lati-
tudes. Tests comparing the growth of each sex of each spe-
cies (Table 3) show that the signifi cance of the results 
varies with the hypothesis being tested. For example, the 
comparison of length-at-age (method 1) of Penaeus semi-
sulcatus and P. esculentus and females was not signifi cant 
(P<0.87) at both six months of age (Table 3). However, 
when the absolute growth rates of the two species were 
compared (method 2), they were highly signifi cantly dif-
ferent (P<0.001). Other tests, such as comparisons of the 
growth of male and female P. semisulcatus, were highly 
signifi cant for all methods (P<0.001). As Francis (1996) 
pointed out, the results from all comparisons with meth-
ods 3 and 5 produce similar results and methods 4 and 6 
give very similar results but in the opposite direction.
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Our tests, in which the two tiger prawn species were com-
pared, show that the signifi cance of the results varies with 
the hypothesis. In our example, we have tried to choose 
lengths and ages that were approximately comparable. 
The results of the six tests for any particular interspecifi c 
or intraspecifi c hypothesis under either scenario are not 
directly comparable because methods 1, 2, and 4 compare 
growth rate at age (6 month or 1 yr) and the other meth-
ods compare growth rate in relation to length (30 mm or 
35 mm). This distinction is more important for the interspe-
cifi c comparisons because growth rate, rather than sexes, is 
more likely to vary between species for most phyla.

Discussion

Tests to compare growth by comparing length-at-age 
(method 1) show that there were no signifi cant differences 
in the size of each sex of the two species, but there were 
highly signifi cant differences in size between the sexes 
of each species. This fi nding differs from the interpreta-
tion if k-values were compared (method 6). In the situa-
tion where a farmer is deciding which species reaches a 
minimum marketable size earlier, we think that method 
1 would be the most logical to use. However, if the farmer 
were trying to decide the potential benefi t or tradeoff of 

Figure 2
Plots of the frequency histogram of 200 bootstrapped estimates of l∞ and k for P. 
semisulcatus males.
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leaving the prawns in the ponds for longer, then one of 
the methods that test for relative changes in growth rate 
(method 4 or 5) would probably be more appropriate.

The difference in parameter estimates, and hence growth 
rates, may have important implications when researchers 
are trying to compare growth between species or between 
regions. Francis (1988) argued that length-at-age data do 
not contain precise information on the expected growth 
rate of fi sh of a given length. He concluded that length-at-
age data and tagging data contain different information 
on growth; therefore the parameters estimated from them 
had different meanings and were not directly comparable. 

Our proposed tests for different methods, including the 
overall test, aim to incorporate all the parameters and the 
overall uncertainties and correlations between each other. 
Further research can be carried out to study the robustness 
of the proposed test and to apply it to other growth models. 
The method suggested for constructing tests to compare 
growth rates could be easily modifi ed to apply to other types 
of growth equation besides the von Bertalanffy equation. 
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