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On comparison of growth curves:
How do we test whether growth rates differ?
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Comparisons of growth rates of popu-
lations and species are important in
fisheries science for a range of reasons
that vary with the context of each
study. Most studies of fish growth have
focused on the practical issues of the
most appropriate way of comparing
growth rather than on recognizing that
there are several methods for making
these comparisons and that the con-
clusions will differ depending on the
method chosen.

Francis (1996) discussed the prob-
lem of how to compare different growth
rates or growth curves. He suggested
six plausible ways of making a com-
parison and suggested that the rate
at which the asymptotic size is
approached was the most natural
method of comparing growth (his
method 6). He illustrated the differ-
ences between the methods by compar-
ing von Bertalanffy growth equations
that are based on fixed growth para-
meters and that assumed that growth
parameters are known and there are
no associated uncertainties. However,
in practice, the growth parameters
are often estimated, and therefore are
random variables. Consequently, the
corresponding growth curves are also
subject to variations.

For comparison with Francis’s work,
we will assume that growth for a spe-

cies is adequately described by the von
Bertalanffy equation with ¢, =0, as

Lt; P =1, (1-e?), (D
in which 3= (%, ) are growth parameters.

Here [(¢) is the mean length at age
t. If B, and B, are two estimates of
B, how do we test whether the corre-
sponding two growth curves are the
same? The traditional way is to com-
pare individual parameters and find
out which ones are significantly differ-
ent. However, the parameter estimates,
[l and k, are often strongly correlated
(Kirkwood and Somers, 1984; Wang
and Thomas, 1995). It may therefore be
more appropriate to compare biological
reference points (e.g. size at one year of
age) rather than growth parameters in
the models (Wang and Thomas, 1995).
Growth comparisons may, in general,
be classified into two types: within spe-
cies and between species. In practice,
the following comparisons may be of
interest:

1 Comparison of the growth rates for
the same species, say E, in which
two sets of growth parameter esti-
mates, ; and fJ,, are obtained
from different time periods, differ-
ent areas or sexes.

2 Comparison of growth rates for
two different species to see which
one grows faster.

As mentioned earlier, Francis (1996)
considered six methods for comparing
growth. For the within-species compar-
ison, it seems all six methods are valid.
However, these methods compare dif-
ferent characteristics of growth and
therefore may reach different conclu-
sions. For example, if we obtain f, =
(0.5,50) from area A and S, = (0.4,60)
from area B, we would conclude that
species E does not grow as large in area
A as in area B and that the & value
(rate at which the asymptotic length is
approached) in area A is larger than
that in area B.

For between-species comparisons, we
agree with Francis (1996) that his
method 6 (k value comparison) is prob-
ably the most appropriate, especially
in the context of comparing growth
between, for example, herring and
orange roughy. However, in some cases,
comparing absolute growth rates at
age or length between species could be
of practical interest.

For example, if you are interested
in choosing one of two species of fish
or crustacean to farm and these two
species look alike and have the same
commercial value, it is more economi-
cal to farm the faster-growing species
to shorten the time taken to reach
market size. In Australia, the tiger
prawn P. esculentus has a larger k&
value than the very similar P. semis-
ulcatus (Somers and Kirkwood 1991),
but P. semisulcatus has the potential of
reaching a commercial size sooner (Fig.
1). Therefore, we would conclude that
P. semisulcatus grows faster than P.
esculentus in this context, and a com-
parison based only on % values may be
misleading.

Therefore, in this note we will extend
Francis’s theoretical study by develop-
ing procedures for establishing statisti-
cal hypotheses for the six methods and
suggest test statistics for comparing
growth curves. We will demonstrate
the differences in conclusions that can
occur among the methods with data on
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Figure 1
A plot of the von Bertalanffy growth curves for male and female P. semisulcatus
(P. semi) and P. esculentus (P. esc) that are being compared by the six methods identi-
fied by Francis (1996).

growth rates of two species of tiger prawn (shrimp) from
northern Australia.

Methods

Overall hypothesis tests on two sets of parameters

Suppose we are interested in testing the hypothesis that
the underlying growth curves corresponding to the two
sets of parameter estimates 8, =(k,/_ ;) and B,=(ky, [ )
are the same. According to the large-sample theory, it is
quite reasonable in most cases to assume that §; and §,
are normally distributed. To be general, we will allow S,
to be correlated with f§,. In notation,

[}1 ~N| (ﬁl) ’[21 212) ‘ 1)
/32 ﬁz Xy I,
Note that if Bl and [§ , are estimated from different data
sets, they may be assumed to be independent, because both

[31 and ﬁ2 are estimates and ﬁl—ﬁ , is approximately
multivariate normal. To test whether the two growth pat-
terns determined by S, and f, are the same or not, we
can use the generalised T2-statistic (Anderson, 1971):

T*= (Bl - Bz), v ([31 - ﬁ2 ) (2)
in which V = the covariance of [}1 - ﬁ2.

The distribution of the T2-statistic is approximately chi-
squared with 2 degrees of freedom, x3 . If the significance
level is o, the corresponding critical value is 3 (o).

In many cases, we are interested in the slope of the
growth curve (growth rate) rather than the curve itself. For
example, we may be interested in comparing the growth
rate during a particular age interval. Owing to natural
mortality or fishing mortality, the period outside of this
age range may be of no practical interest. In this case, it
is may be more appropriate to consider the growth pat-
terns over a specified age or length range rather than the
whole range, which would put more emphasis (weight) on
the asymptotic length in the comparison.
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Tests to compare two growth equations Let g be a growth
function of (k, [_) that we are interested in comparing.
Table 1 lists the six g functions corresponding to the six
methods identified by Francis (1996). For a given function
g, we will test g(B,) = g(B,) versus g(B;) # g(By) or g(;)
> g(B,), depending on the context. Standard normal tests
may be used for a specified g function. The test will rely on
the properties of D=g(3,) — g(3,). Let E(D) and V(D) be the
corresponding expectation and variance of D when fis the
true parameter. Under the null hypothesis, g(B;) = g(8,),
and using standard Taylor series expansion, we can work
out analytic expressions of E(D) and V(D). Some pooled
estimates of § may be required to input to E(D) and V(D)
to obtain approximate values of E(D) and V(D). We can
obtain E(D) from Eg(j3,) — Eg(S,) and

E(g() =g+ (fioh 420+ fuch),  ®

in which f values are from the second derivative of g with
respect to § (Table 1) and

(611 012] V(ﬂ) (4)

012 022

The variance of D can be obtained from

in which X; = the gradient or first derivative of g; (Table
1); and

¥’s = the components of the covariance defined
earlier.

Note that the last term disappears if [31 and [32 are
independent of each other. There are a few possible ways
to obtain the approximate significance level, P. However,
the most widely used method assumes D is normally dis-
tributed. Then we can use the z-test, which is based on the
normal approximation for large sample sizes. For a one-

sided test g(B;) = g(B,) vs. g(B;) > g(B,)

P=~1-

D -D
D =0 (6)
V(D) [J V(D) ]

where ® = the standard normal distribution function.
For a two-sided test, we have

_so| 12

i) o

If we are interested in the growth for a range of ages

V(D)=

X's X, + XI'5,X, - 2X75,,X,, (5) 6

), or the sizes (I ), we may

min’ max min’ max

consider the in-

Table 1

derivatives assuming S~(,,%).

The six growth models g(f) that correspond to methods of comparing mean growth of two species or populations in Francis (1996)
and their first x= Zz and second 7= Zg

6 Comparison of rates at which the
asymptotic size is approached

Method g(B) X F
1 Comparison of lengths g=1_(1—eh) Lte™ Lt e
at each age “ 1-e te 0
2 Comparison of absolute g =1_ ket Le™(-kt) ~2-k)tle™ (1-kt)e™
growth rates at each age “ ke * (1-Fkt)e™ 0
3 Comparison of absolute =1 _-Dk l-1 01
growth rates at each length - k 10
-kt _ 2 —kt,—k ki
4 Comparison of relative ke 167,”]?13‘“ Qe e™ e
growth rates at each age &= 1—e 1-e) A-e™y A-e™y
—e 0 0
lx -1 1
5 Comparison of relative (. -Dk l 0 1
growth rates at each length 1 k 1 0
l l
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tegrated squared difference over the specified range. For
example, if g; = L;e7#i* and g, = Aye?, in which A, = kyl_;
and A, = kyl_,,we will rely on

D= [ (g0~ g®)d.

The corresponding expectation and variance can also be
approximated by the delta method.

We then apply each method to comparisons of the growth
of males and females of two species of tiger prawn caught
during tagging studies in northern Australia (Somers and
Kirkwood 1991). We will consider two scenarios: 1) growth
at age 0.5 yr (for methods 1, 2, and 4) or growth at length
30 mm (for methods 3 and 5); 2) growth at age one yr (for
methods1, 2, and 4) or growth at length 35 mm (for methods
3 and 5). In order to verify that our test assumption that D
was normally distributed, we obtained frequency plots for
the bootstrapped estimates of the growth parameters.

Results

We first bootstrapped the parameter estimates for each
group to assess whether our assumption that the para-
meters were normally distributed was valid. The plot for
male P. semisulcatus showed that there was little evi-
dence of skewness in our estimates (Fig. 2). Plots for other
groups are similar and not shown here. The ¢ tests pro-
posed in this paper, although based on normal distribu-
tions, are well known to be robust to violation to normality
(which is why they are also known as “robust” test in sta-
tistics). On the other hand, the proposed tests rely only on
mean and covariance estimates and the covariance matrix
is often obtained from asymptotic distribution (normal) of
the estimates in nonlinear regression.

We tested for the overall significance of each comparison
before proceeding with testing the six methods. All were
highly significant (P<<0.00001) and 7% statistics ranged
from 43.2 for the comparison of P. semisulcatus females
versus P. esculentus females to 385.7 for P. esculentus
males versus P. semisulcatus females. Given that the over-
all growth curves differed among species, then it is reason-
able to then look further at the growth rates yielded by the
different methods.

The growth models for the six methods of comparing
growth and their first and second derivatives differed
between methods (Table 1). The growth parameters used
in the comparison show apparent differences in the size of
both /_ and 2 among the species and sexes (Wang, 1998).
These differences in the absolute value of each parameter
translate into quite large differences in the shape of the
growth curves (Fig. 1). The effect is most striking for
Penaeus semisulcatus, but does growth differ? Is it affected
if we choose a particular length or age?

The results of tests from the six methods are shown in
Table 2. The difference in lengths between P. esculentus
and P. semisulcatus at the age of 0.5 yr is not significant for
either males or females (in method 1 in Table 2), but the
difference becomes very significant at age 1 yr. This result
is consistent with the plot in Figure 1. However, the con-
clusion is reversed when comparing growth rate (method
2 in Table 2) instead of length. The relative growth rates at
either age (0.5 yr or 1 yr) for P. esculentus do not differ sig-
nificantly between males and females (method 4), whereas
the rates at length 30 mm or 35 mm differ significantly.
This is also biologically plausible because the growth rate
at length 35 mm is very close to zero for P. esculentus
males (the asymptotic size is only 35.6 mm) and there is
a substantial growth to be gained for females (the asymp-
totical size is 44.7 mm). For method 6, the comparion is
independent of specified length or age (two scenarios give
the same results).

In prawn farms, P. esculentus and P. semisulcatus are
harvested after 6 or 12 months, depending on the circum-
stances, such as the farmer’s need to increase the number
of generations within the growing season at higher lati-
tudes. Tests comparing the growth of each sex of each spe-
cies (Table 3) show that the significance of the results
varies with the hypothesis being tested. For example, the
comparison of length-at-age (method 1) of Penaeus semi-
sulcatus and P. esculentus and females was not significant
(P<0.87) at both six months of age (Table 3). However,
when the absolute growth rates of the two species were
compared (method 2), they were highly significantly dif-
ferent (P<0.001). Other tests, such as comparisons of the
growth of male and female P. semisulcatus, were highly
significant for all methods (P<0.001). As Francis (1996)
pointed out, the results from all comparisons with meth-
ods 3 and 5 produce similar results and methods 4 and 6
give very similar results but in the opposite direction.

Table 2
The von Bertalanffy growth parameter estimates of Penaeus esculentus and P. semisulcatus from the Gulf of Carpentaria, northern
Australia, used in growth comparisons between sexes of each species and between the two species for the same sex. The unbiased
estimates were obtained by the equation of Wang (1998) and based on tagged prawn data from Somers and Kirkwood (1991).

Species Sex n .. = SE (mm) k + SE (per yr) Cov (_, k)

P, esculentus M 333 35.6 +0.3 28+0.2 -0.0565
F 224 44.7 £ 1.2 2.6+0.3 -0.395

P. semisulcatus M 159 38.6 +0.5 26+0.2 —-0.0886
F 204 549 +1.7 1.8+0.2 -0.2788
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Our tests, in which the two tiger prawn species were com-
pared, show that the significance of the results varies with
the hypothesis. In our example, we have tried to choose
lengths and ages that were approximately comparable.
The results of the six tests for any particular interspecific
or intraspecific hypothesis under either scenario are not
directly comparable because methods 1, 2, and 4 compare
growth rate at age (6 month or 1 yr) and the other meth-
ods compare growth rate in relation to length (30 mm or
35 mm). This distinction is more important for the interspe-
cific comparisons because growth rate, rather than sexes, is
more likely to vary between species for most phyla.

Discussion

Tests to compare growth by comparing length-at-age
(method 1) show that there were no significant differences
in the size of each sex of the two species, but there were
highly significant differences in size between the sexes
of each species. This finding differs from the interpreta-
tion if k-values were compared (method 6). In the situa-
tion where a farmer is deciding which species reaches a
minimum marketable size earlier, we think that method
1 would be the most logical to use. However, if the farmer
were trying to decide the potential benefit or tradeoff of
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leaving the prawns in the ponds for longer, then one of
the methods that test for relative changes in growth rate
(method 4 or 5) would probably be more appropriate.

The difference in parameter estimates, and hence growth
rates, may have important implications when researchers
are trying to compare growth between species or between
regions. Francis (1988) argued that length-at-age data do
not contain precise information on the expected growth
rate of fish of a given length. He concluded that length-at-
age data and tagging data contain different information
on growth; therefore the parameters estimated from them
had different meanings and were not directly comparable.

Our proposed tests for different methods, including the
overall test, aim to incorporate all the parameters and the
overall uncertainties and correlations between each other.
Further research can be carried out to study the robustness
of the proposed test and to apply it to other growth models.
The method suggested for constructing tests to compare
growth rates could be easily modified to apply to other types
of growth equation besides the von Bertalanffy equation.
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