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Abstract.-Fisheries discard data
are often characterized by a smooth dis­
tribution of positive amounts of per-set
discard but with an extremely large
number of zero observations. This dis­
continuity is difficult to fit with a stan­
dard distribution. One approach is to
model per-set discard with a mixture
of two distributions. with one compo­
nent representing the zero observations
and the other representing the obser­
vations of positive discard. In this pa­
per. we describe such a mixture model
that is suitable when the discard ob­
servations have been rounded to inte­
ger amounts. In particular, when
"rounded" zeros (representing small
amounts of discard) and "true" zeros
(representing no discard> are indistin­
guishable in the data, the mixture
model can be used to estimate the pro­
portion of either. We fit this model to
tuna discard data collected by observ­
ers aboard the U.S. tuna purse-seine
fleet in the eastern tropical Pacific
Ocean during the years 1989-92. We
use the model to estimate discard per
set. allowing the model parameters to
depend upon fishing strategy and geo­
graphic location, and we estimate mean
discard per set fisherywide.

Manuscript accepted 26 October 1995.
Fishery Bulletin 94:330-340 0996>.

Southwest Fisheries Science Center
National Marine Fisheries Service. NOM
P.O. Box 27 1. La Jolla. California 92038

Many fisheries catch unwanted in­
dividuals of nontarget species in
addition to target species. This
bycatch is generally discarded and
in many fisheries few, if any, indi­
viduals survive capture and discard
(e.g. Joseph, 1994l. Estimating the
extent of such discard is increas­
ingly important as fisheries manag­
ers contend with situations where
unwanted catch in a fishery is de­
sirable in other contexts. For ex­
ample, bycatch in one fishery may
include juvenile members ofthe tar­
get species in the same or another
fishery, or individuals from threat­
ened, endangered, or protected spe­
cies (e.g. Collins and Wenner, 1988;
Caillouet et al., 1991).

Despite their increasing impor­
tance, bycatch and discard remain
relatively unstudied. Few fisheries
routinely measure discards so that
the amount ofdiscard usually must
be estimated rather than reported
directly (e.g. Berger et al., 1989).
The U.S. tuna purse-seine fishery
in the eastern tropical Pacific Ocean
(ETP) provides an opportunity to
examine this problem because
quantitative information on discard
of tuna (including both nontarget
tuna species and juveniles oftarget
species) has been collected from the
fishery since 1988.

A flexible approach is required to
model tuna discard from this fish­
ery because the purse-seine vessels
capture fish using three distinct
fishing strategies. These strategies
are defined by the different types
of sets involved: "log fishing,"
"school fishing," and "dolphin fish­
ing." Log fishing catches tuna by
setting purse seines around fish
associated with floating objects. Log
sets usually capture schools ofsmall
(30--50 cm) yellowfin tuna, Thunnus
albacares, or mixed schools ofsmall
yellowfin and like-size skipjack
tuna, Katsuwonus pelamis. School
fishing catches tuna by setting
purse seines around schools com­
posed purely oftuna (again, usually
small fish and either pure schools
of yellowfin or mixed schools ofyel­
lowfin and skipjack tuna), located
by surface disturbances created by
the schools. Dolphin fishing catches
tuna by first locating surface distur­
bances created by closely associated
dolphins <NRC, 1992) and by setting
purse seines around both tuna and
dolphins. Tuna associated with dol­
phins almost always consist of pure
schools oflarge <80-120 cm) yellow­
fin tuna <lAITC, 1989).

Logfishing generates large amounts
of tuna discard in almost every set,
whereas school fishing generates
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moderate amounts of tuna discard and in a
smaller proportion of sets than does log fishing
(Joseph, 1994). Dolphin fishing generates small
amounts of tuna discard and only infrequently.
Thus, tuna discard data from dolphin sets are
almost all zero observations; whereas data from
log sets are mostly nonzero observations, and
school sets are an intermediate case.

In this paper we develop a method for using
a single probability distribution to model dis­
card per set for these three disparate types of
data and show how to use the model to esti­
mate mean discard per set for each set type.
The focus of the present study is development
and description of the model as a solution to a
common problem in discard estimation. In gen­
eral, the method presented is applicable to any
situation involving analysis of data character­
ized by subsets with varying proportions ofzero
observations. Detailed results of applying the
model and its implications for the U.S. tuna
purse-seine fishery in the ETP are the subject
of a future paper.

Methods

Data

The data consisted of per-set estimates of total tons
of tuna discarded by the U.S. fleet only. We did not
have access to data on species or size composition of
tuna discards nor to data on nontuna discards.

Data were collected by National Marine Fisheries
Service (NMFS) or Inter-American Tropical Tuna
Commission (lATTC) observers placed aboard U.S.
tuna purse-seiners during routine fishing trips to the
eastern tropical Pacific Ocean <Fig. 1) as part of a
bycatch study initiated in 1989 by the IATTC. Ob­
servers recorded time and position of all sets made
by U.S. vessels fishing in the ETP during the 31­
month study period <from 1 September 1989 to 30
March 1992). Observer coverage was 100% during
this period. However, during the first eleven months
(from 1 September 1989 to 30 July 1990), discard
information was recorded only for approximately half
of the sets. Observers recorded discards for all sets
during the remaining twenty months.

Because it was not feasible to weigh tuna discard
directly, observers estimated the discard weight by
counting the number ofbrailers (large fish baskets)
used to empty the net after each set, multiplying by
an estimated tonnage per brailer, and then multi­
plying by the estimated fraction of nontarget tuna
in the catch. Observers estimated this fraction by
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Figure 1
Geographic strata used in developing models to estimate mean
discard per set for the U.S. tuna purse-seine fleet fishing in the
eastern tropical Pacific Ocean. 1989-92 (Federal Register.
1989). Area 3 includes all ETP not explicitly included in areas
1 and 2.

observing the composition of brailers or by observ­
ing catch sorting on deck. Occasionally the majority
of the catch was discarded before being brailed
aboard. In these cases, observers estimated discard
weight by first estimating the weight of the total
catch and then subtracting an estimate of the ton­
nage loaded by brailer.

Observer estimates of discard tonnage were
rounded to integer values, with rounding interval
increasing with amount of discard (Fig. 2 I. There is
a systematic tendency toward rounding to the near­
est 5 or 10 metric tons (t) for small and medium esti­
mates of discard and to the nearest 25 or 50 t for the
largest estimates. For sets with moderately small
amounts of discard, observer estimates tended to be
more precise because the bycatch, as well as the tar­
get fish, were brailed aboard the vessel, then sorted
on deck. This allowed the discard to be easily com­
pared with the total catch. For sets with large
amounts of discard, the fish may not have been
brought on board, making precise estimates more
difficult and rounding tendencies greater. For sets
with very small amounts of discard, weights were
rounded to the nearest ton so that it was not pos­
sible to distinguish observations with no discard from
those with very small amounts of discard (less than
one-half ton). Thus, "zero observations" may corre­
spond to either case.

We did not attempt to account for the uncertainty
introduced by these sources of measurement error
and rounding. In the absence of data or studies for
determining the ground truth of observer estimates
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Figure 2
(A-E) Observed and fitted per-set tuna discards for school, dolphin,
and log sets for the U.S. tuna purse-seine fleet fishing in the eastern
tropical Pacific Ocean, 1989-92. Geographic areas are defined in Fed­
eral Register (1989) (Fig. 1). Bars indicate observed frequencies, lines
indicate fitted frequencies from the negative binomial with added ze­
ros model. Thp portion <above horizontal division) ofthe fitted frequency
for the zero bin of dolphin and school set data represents "true zeros."
bottom portion represents ~rounded"zeros from negative binomial INB)
component. Vertical axes have been cut and scaled to make NB compo­
nents directly comparable. Not shown: (e) 3 observations >50 tons.lDl
16 observations >50 tons. (E) 12 observations >50 tons.

of discard or in the absence of a plausible model for
the measurement errors. we treated the discard
weight estimates as exact measurements.

Discard weight was recorded for 59% (2.110 of
3,590, Table 1) of observed dolphin sets, 76% (960 of
1,266) ofobserved school sets, and 75% (998 of1,328)
ofobserved log sets. These sets generated 134, 1,098,
and 9,819 tons of reported discard. respectively. The

relatively small discard totals for school and dolphin
sets were due to the large numbers ofthose sets with
zero discard reported. Positive amounts of tuna dis­
card were reported in 65% (650 of998, Table 1) oflog
sets for which discard was recorded. but in only 8%
(80 of960) of school sets and only 0.9% <19 of2,110)
of dolphin sets for which discard was recorded. We
ignored log and school fishing in area 2 (see next sec-



Perkins and Edwards: A mixture model for estimating discarded bycatch 333

Table 1
Fishing effort in numbers of sets for the U.S. tuna purse­
seine fleet fishing in the eastern tropical Pacific Ocean,
1989-92. Geographic areas are defined according to Fed­
eral Register (1989) (Fig. 1l. N is the total number of sets
in a given area, n is the number of sets for which discard
weight was recorded, and n+ is the number ofsets for which
strictly positive discard was reported.

Set type Area N n n+

Dolphin 1 2,496 1445 10
2 498 272 5
3 596 393 4

Total 3,590 2,110 19

School 1 399 279 32
2 0 0 0
3 867 681 48

Total 1,266 960 80

Log 1 537 326 257
2 10 4 4
3 791 672 393

TotaJl 1,328 998 650

I Totals for log sets do not include sets in geographic area 2 be-
cause these sets were not included in our analysis. See text for
explanation.

tion) for this analysis, because 0 school sets and only
10 log sets (4 with estimated discard) occurred in
this area (Table 11. We also omitted 7 sets in which
the entire catch (target catch plus discard) was lost
owing to equipment failure.

Modelling discard per set

We chose a modified negative binomial CNB) distri­
bution known as the negative binomial with added
zeros (NBAZ) <Johnson and Kotz, 1969) to model dis­
card per set. This distribution can accommodate the
wide range in the proportion ofzero observations, as
well as the relatively heavy tails in the observed dis­
tributions of discard for all three set types (Fig. 2).
(See Discussion section for two other models consid­
ered but rejected.)

The NBAZ is a mixture of a NB distribution and a
discrete probability mass at zero. Under this model,
discard per set is either exactly zero with probabil­
ity p or has a NB distribution with probability I-p.
The NB portion of this distribution can be viewed as
representing strictly positive amounts of discard
rounded to integer values. Thus, zero values that are
part of the NB can be interpreted as observations of
small amounts ofdiscard rounded down to zero. Zero
values from the probability mass can be interpreted

as exact zeros. The probability function for this modi­
fied NB distribution is

Pr{Y =y} =

{
P+(I-P)(I+~).ItQ, y=o

(1)
n Y+IIQI( I )IIQ( Q).I ).v

(1- p) .v!rO/Ql I+Q).I I+Q).I' Y = 1,2,...

where Yis an individual observation (tons ofdiscard
per set), P is the probability of an observation com­
ing from the "true zero" state, I-p is the probability
of an observation coming from the NB state, and J1
and a are the mean and variance parameters, re­
spectively, of the conditional NB.l

The parameter a determines the shape of the dis­
tribution. As a approaches zero, the conditional NB
distribution in the mixture approaches a Poisson dis­
tribution. As a increases. the conditional NB becomes
more skewed, with a heavier tail and higher probabil­
ity of a zero observation. The parameter p is a mixing
parameter which controls the relative importance of
the NB and the probability mass at zero, When p is
one, the distribution is a probability mass at zero. When
p is zero, the probability distribution becomes strictly
NB and expected discard per set is J1 (the NB mean>.

The expected value and variance for individual
observations from this probability distribution are

E[Y] =(1- p)J1 (2)

var[Y]=(1-p)(J1+(a+p)J1~). (3)

We fit the NBAZ model using maximum likelihood
and allowing the three model parameters to depend
upon set type and geographic area. We also consid­
ered using tons oftuna loaded (i.e. commercial catch),
time of day, and month as covariates. but rejected
them as either unfeasible (due to sampling unbal­
ance) or statistically unimportant. We did not at­
tempt to account for any long-term (i.e. year to year)
trend in discard rates because the data included too
few years for such an analysis.

A priori, we used the same three geographic areas
(Fig. 1) as those currently used to compare U.S. and
non-U.S. dolphin mortality rates (Federal Register,
1989). These roughly define the major fishing areas in

1 The NBAZ can be equivalently reparametized in terms ofa "zero­
truncated" NB and a probability mass at zero. The parameter
corresponding to p would, in that case, denote the probability
of a zero observation regardless of source. Thus, that form does
not distinguish between "true" and "rounded" zeros.
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whereas the "pooled" estimate for all areas combined
is estimated as

total effort in each area. For example. mean discard
per set of type i in area) is estimated as

E[}j]pooled = LN;.jE[Yj.j] ILN;.j' (5)

j j

where the set type subscript i is suppressed for clar­
ity. Similarly. with complete areal dependence, the
MLE for each area reduces to the sample mean in
that area, and the "pooled" estimate is computed by
using Equation 5. In both of these cases, the vari­
ance for the MLE of <l-p»)1 can be estimated by us­
ing the sample variance of the data.

When only the mixing probability p depends on
area, the MLE for mean discard per set in area) is
slightly more complicated, and reduces to

(4)

(6)

E[Y- .] = (I - p. .)jJ ..
I.} 1•./ I.} ,

E[Y] =y =(I1n)LYk,
k

where N;J is the total effort (in number of sets) of
type i occurring in area}. Note that this "pooled" cal­
culation is based on the proportion of total sets (in­
cluding those for which discard was not recorded>
observed in each area. This is an estimate ofthe mean
discard per set over the entire fishery during the
study period. However, it is also valid as a predic­
tion offuture discard if the proportion of effort (setsl
in each area remains constant as the actual number
ofsets varies, assuming that other factors in the fish­
ery, such as size and species composition of discard
and style of fishing, remain the same.

While Equation 4 provides a straightforward way
to compute the MLE for the product (l-pJ)1, the vari­
ance of that product can be difficult to estimate ac­
curately. However, we were able to use the likelihood
equations for the NBAZ to derive explicit forms for
the MLE of mean discard per set. Specifically, only
the product (l-p»)1 need be estimated, and we de­
rived, through algebraic manipulation of the likeli­
hood equations, simple closed-form expressions that
do not involve the individual parameter estimates.
By the invariance properties ofmaximum likelihood
estimates, these simpler forms give results that are
identical to those from using Equation 4.

With no areal dependence, the MLE for the prod­
uct <l-p»)1 is simply the sample mean:

Estimating mean discard per set

We used Equation 2 and the maximum likelihood
estimates for p and )1 from the best-fit models to es­
timate mean discard per set for each set type in each
area. We also calculated a "pooled" estimate for each
set type as the weighted average of the area-specific
estimates, where weightings were proportional to

the system. The total number of sets observed in each
area, including sets for which discard was not recorded,
represents the actual areal distribution of fishing ef­
fort during the study period. However, observation of
discard was not proportional to this distribution of to­
tal effort (Table 1l. In the analysis that follows, it is
important to distinguish between the total number of
sets, denoted by N;J' and the number of sets for which
discard was recorded, denoted by nij" The former de­
fine the actual distribution of fishing effort, whereas
the latter simply reflect the sample taken: Because our
sample of sets with discard recorded was not propor­
tional to the total effort, ignoring area in the analysis
could lead to biased estimates if the mean discard per
set differs from area to area for a given set type.

Because there were clear differences between the
the three set types in per-set discard, we included
set type as a covariate for all three model param­
eters. Thus, with set type and geographic area as
the only covariates, our analysis reduced to fitting
the model (Eq. 1) independently for each set type,
with p, )1, and a having possibly different values in
each area. To determine an appropriate dependence
upon area, we used stepwise likelihood-ratio tests to
select the simplest model that could not be signifi­
cantly improved by adding additional terms. We first
made initial fits for each set type using no areal de­
pendence, then progressively added dependence for
more of the model parameters. At each step, we used
a quasi-Newton numerical optimization algorithm to
maximize the likelihood and estimate parameters.
It should be noted that because this is not a linear
model, significance levels (i.e. p-values> from these
likelihood-ratio tests are approximate. We used the
large-sample normal approximation for MLE's to
compute standard errors for p, )1, and a. For com­
parison, we also computed bootstrap standard errors.

It can be shown from the likelihood equations for
the NBAZ that estimates for the parameters a and)1
depend solely on the positive observations in the data.
The estimate for the parameter p depends on all the
data, but most strongly upon the proportion of zero
observations. Thus, the precision ofthe estimates for
a and)1 can be very poor if the data contain few posi­
tive observations, even though the precision of the
estimate for p may still be very good.
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where n/ and nj are the number of positive observa­
tions and the total number of observations in areaj,
theYk+ are the positive observations in all areas, and
n+ is the total number of positive observations in all
areas. Similarly, when only the NB mean J.l depends
on area, the MLE for mean discard per set in areaj
reduces to

Elll

- M "0.. .. ~
~ l!! 0.. 0..

Ell].-.

~

Dolphin sets

t,
ex>
ci

~l
Elll

Ii
0

"C

""0
0
0..

c:
0

"iii School sets
.~ ~

> ,i'0
'E ex> tl
Ql ci
'0

:ai -.: p
0 0

u
0
ci - M

~
..
l!!.. ..

~
Log sets

ex>
ci

""ci t,
C!i

,i- - - -0 - M - M.. .. .. ..
l!! l!! l!! l".. .. .. ..

of discard per set for only two of the three set types
(log and school sets).

Nonzero observations of discard from the third set
type (dolphin sets) were reported very infrequently
(19 out of2,110 sets, Table 1). The data provided little
statistical information from which to distinguish
patterns in discard between geographic areas, and
area failed to produce a significant improvement in
the fit when included as a covariate for dolphin sets.
Therefore, we selected the model with no areal de­
pendence for any of the parameters so that the esti­
mates for p, a, and J.l for dolphin sets are fishery­
wide values (Table 2). The standard error ofthe mix­
ing parameter p for the dolphin model is small
(CV=1.53%), reflecting the high estimate for p dictated
by the extremely large number ofzero observations of
discard. The standard errors ofthe parameters for the
NB portion ofthe probability distribution (a and J.l) are
quite large (CV's > 90%, Fig. 3), reflecting the few posi­
tive data available for their determination.

(8)

(7)
E[Yj]=(n/ In>~:y/In+,

k

E[Yj] = (n+ In)LYj,/ In/,
k

where n+ and n are the number of positive observa­
tions and the total number of observations in all ar­
eas, the Yj,k+ are the positive observations in areaj,
and n/ is the total number of positive observations
in area j. Again, Equation 5 is used to compute
"pooled" estimates in these latter two cases. Note that
the estimates for different areas are not independent,
because both Equations 7 and 8 involve observations
from all areas. In particular, the first term in Equa­
tion 7 is an area-specific estimate of the probability
ofa positive observation, whereas the second term is
a "pooled" estimate of the mean for positive observa­
tions. This is consistent with the areal dependence
on which Equation 7 is based, and provides more
precise estimates of E[Y] than simply taking the
sample mean in each area. A similar interpretation
holds for Equation 8.

As a consequence of Equations 6, 7, and 8, the es­
timate of mean discard per set (1-p)J.l can be much
more precise than the estimates of the individual
parameters involved in it, because it does not depend
solely on either the positive observations or the pro­
portion of zeros.

While variance estimators for Equation 6 are
straightforward, there is no simple analytic result
for estimating the variance of Equations 7 or 8 (see
Discussion). Thus, for consistency, we used bootstrap
methods in all cases. Our bootstrap resampling pro­
cedure varied slightly for each set type, depending
on the particular areal dependence chosen for the model
parameters. When no dependence was appropriate,
data were resampled across all areas. When dependence
was important, data were resampled by area in the
same proportions as the original observations.

Results

Modelling discard per set

Based on the results of likelihood-ratio tests, geo­
graphic area was a statistically significant predictor

Figure 3
Coefficients of variation for estimates of the model param­
eters P. a, and 11. and for estimates of mean discard per set
for the U.S. tuna purse-seine fleet fishing in the eastern
tropical Pacific Ocean. 1989-92. Geographic areas are de­
fined in Federal Register (1989) <Fig. 11. Pooled estimates
are fisherywide. across all areas.
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Parameter estimates from a fit of the negative binomial with added zeros to tuna
discard data from the U.S. tuna purse-seine fleet fishing in the eastern tropical
Pacific Ocean, 1989-92. p is the mixing parameter, and Jl and a are the mean
and shape parameters of the conditional negative binomial. Standard errors are
in parentheses. Geographic areas are defined according to Federal Register (1989)
(Fig. 1).

At the other extreme, nonzero discard observations
were very frequent for log sets (650 out of 998 sets,
Table 1). Using fishing area as a covariate for both
the mean and shape parameters Ji and a., we im­
proved the fit significantly (p-value <0.001) over sim­
pler models. However, the numerical optimization
failed to converge to a positive value for p in either
area, producing estimates of zero for p in both areas
(Table 2), Thus, the estimated probability distribu­
tions effectively collapsed to unmodified NB's. Be­
cause positive observations were so abundant, esti­
mated standard errors for the mean and shape pa­
rameters (Table 2) were small (CV's <8.5%, Fig. 3).

Discard from school sets presented an intermedi­
ate case in which we selected a model which included
marginally different estimates for the mixing prob­
ability p in areas 1 and 3, but no geographic depen­
dence for a or Ji (Table 2). Because there were consid­
erably fewer nonzero observations (80 out of 960 sets,
Table 1) for school sets than for log sets, parameter
estimates were much less precise. Likelihood-ratio tests
indicated that fishing area should be included as a
covariate for either the shape parameter a or the mix­
ing probabilityp, but that including areal dependence
for p and a simultaneously, or for Ji, did not further
improve the fit. Because the approximate p-values for
adding areal dependence to the two parameters were
fairly similar (0.04 for a, 0.12 for p) and the two pa­
rameters have similar effects in the model, l there was
no clear basis for selecting one parameter over the other.
We subsequently decided to include areal dependence
only for p for two reasons. First, the small number of

0.982 (0.015) 0.715 (0.182) 0.825 (0.111) 0

5.53 (3.60)

(0)

Area 3

o

positive observations for school sets
limits the precision ofthe shape es­
timate. Second, the difference in the
estimated shape between areas was
due mainly to two unusually large
observations in area 3. Without
these two observations, the differ­
ence in estimated shapes was re­
duced, and the significance levels of
the two different models were
nearly equal (approximatep-values
of0.09). As was the case for dolphin
sets, the predominance of zeros in
the school set discard data led to
small estimated standard errors for
the mixing probability p (CV's
<13.5%, Fig. 3) but to large esti­
mated standard errors for the mean

and shape parameters (CV's > 65%, Fig. 3).
In our model, p may be interpreted as the prob­

ability of exactly zero discard, as opposed to small
amounts of discard that have been rounded down to
zero in the data. The estimates of p for the three set
types imply that essentially all dolphin sets (98%)
involve no discard, whereas log sets always involve
at least some discard. Observer experience2 indicates
that this result is consistent with generally observed
patterns for dolphin and log sets.

The estimated shape parameters varied widely
between the three set types (Table 2), but the large
standard error estimates for the school and dolphin
shape parameters prevent us from making any strong
statements about shape as a function of set type. As
mentioned above, the estimated shape parameter for
school sets was strongly affected by the presence of
two unusually large observations (100 and 125 tons
ofdiscard) in area 3. Repeating the analysis without
these two observations led to a shape estimate of3.75
(SE=2.10), which is more similar to the shape esti­
mates for log sets (2.94 for area 1,3.93 for area 31.

We could not use bootstrap methods to compute
standard errors for dolphin sets because there were
so few sets observed with positive discard recorded
(Table 1). In resampling for the bootstrap, approxi­
mately one-third of the samples contained too few
positive observations for the maximum likelihood
algorithm to converge. Therefore, Table 2 includes
only the standard errors computed from the analytic
approximation formulae..

Log sets

(01

Area 1

2.34(0.19) 3.9310.25)

15.4 n.3) 7.0910.55)

Area 3

7.20 (6.28)

School sets

Table 2

Area 1

3.87 15.36)

Dolphin sets

3.53 (3.21l

Parameters

a

p

1 P and a are similar in the effect they have on the estimated
distribution. Increasing either one increases the probability of
a zero observation, although increasing a also increases the
probability of a large observation.

2 Jackson, A. 1994. Southwest Fisheries Science Center, Natl.
Mar. Fish. Serv., P.O. Box 271, La Jolla, CA 92038. Personal
commun.



Perkins and Edwards: A mixture model for estimating discarded bycatch 337

Estimating mean discard per set

Because the model we fitted for discard from log fish­
ing reduced to a simple NB distribution (with p=0),

the estimates ofmean discard per log set in each fish­
ing area are just the corresponding mean parameters
J1 .. Mean discard per school or dolphin set was esti­
rriated with Equation 4.

Estimates of mean discard per log set were an or­
der of magnitude larger than those for school sets
and two orders of magnitude higher than those for
dolphin sets (Fig. 4). Most of this difference is due to
the wide range in the estimated proportion of sets
with zero discard. By comparison (Table 2), estimated
mean parameters for the NB component ofthe model
differ by less than a factor of five. Thus, the model
that we fitted indicates that, on average, there is a
considerable difference among set types in per-set dis­
card, although for sets in which discard actually oc­
curs, there is comparatively less difference in the
amount.

Mean discard for log sets was estimated at 10.5 t
per set pooled over areas, ranging from 7.1 t per set

llnn i
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Figure 4
Estimated mean tuna discard per set for the U.S. tuna
purse-seine fleet fishing in the eastern tropical Pacific
Ocean, 1989-92. Geographic areas are defined in Federal
Register (1989> (Fig. 1). Pooled estimates are fisherywide,
across all areas. Standard errors are indicated by error
bars.

in area 1 to more than double that value (15.4 t per
set) in area 3 (Fig. 4), Mean discard for school sets
was estimated at 1.16 t per set pooled over areas,
ranging from 1.57 t in area 1 to 0.97 t in area 3. Mean
discard per set for dolphin sets was estimated at 0.06
t per set fisherywide. Implications of these results
for the fishery are discussed in another study
(Edwards and Perkins, in prep.).

The coefficients ofvariation (CV's) for the estimates
of mean discard per school and dolphin sets (21%
and 33%, respectively) are much smaller than those
for the individual parameter estimates of a and J1
(Fig. 3). As noted in Methods, this is because esti­
mating mean discard per set (Le. (l-p)J1) is a more
robust procedure than estimating the individual pa­
rameters. In the case of log sets, the CV's for the es­
timates ofE[Y] and J1 differ (Fig. 3), even though in
this case the model reduced to a NB distribution
where E[Y] = J1. The CV's differ because in estimat­
ing variances for the individual parameter estimates
we used analytic approximations, while in estimat­
ing variances for mean discard, we used bootstrap
methods (see Methods).

Where possible (i.e. log and dolphin sets), we esti­
mated variances using the analytic expression inEqua­
tion 10 (see Discussion) and found that the results
agreed with bootstrap estimates to within about 5%.

Note that the fisherywide estimates for log and
school sets are not simply the average of the esti­
mates in each fishing area. This is because the num­
ber of sets in each area for which discard was re­
corded was not proportional to the actual number of
sets made in that area. This imbalance was an im­
portant reason for including geographic area in the
analysis. Nonproportional sampling was not a fac­
tor for dolphin sets, because the estimated discard
in that case was the same for all fishing areas.

Discussion

Estimating model parameters

Our approach differs somewhat from that of Mangel
and Smith (1990), who used the NBAZ to estimate
the total biomass of a fish stock. In their analysis,
observations ofcatch from within a stock's geographic
range were modelled with the NB component, while
the probability mass at zero accounted for observa­
tions from outside the range. The sole parameter of
interest was the mean J1 of the NB component, and
fixed values were assumed for the mixing and shape
parameters p and a. They reduced the count data to
"presence-absence" and derived a likelihood for J1 in
terms of that reduction. In contrast, we were inter-
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var(E[Yl) = (II n)var[Yl

= (llnHl- p>(.u +(a + p).u2
),

which can be estimated by substituting MLE's for a,
.u, andp. More simply, by using the fact that the es­
timator is just the sample mean, the minimum vari­
ance unbiased estimate of Equation 9 is the sample
variance,

v~r (E[y]) =[~(y; - yl'l(n -II,

likelihood equations for the NBAZ and found simpli­
fied forms for the MLE of E[Y]. In some cases,
the simplified form reduces to the sample mean,
Equation 6, and the variance of that estimator is
simply (suppressing area and set type subscripts for
simplicity)

_111.11111111111111111111111111111..•__.._- __ ___ _ _

Dolphin sets
All areas

o

School sets
0

All areas~
0
CD

0

'"

.....IIIIIIIIIIIIIIIIII.J..,""--------
0...
0
C\I

0

0 5
~.

10

81 Log sets

;;1 Area 3

CD

0

'"0...
0
C\I

oj

0 5
~I"

10

o

g
g
o...
o
N

Figure 5
Sample histograms of 1.000 bootstrap replicates of estimates of the
negative binomial mean parameter Ji, for dolphin, school, and log sets.
See text for a complete description of the parameter.

In an attempt to derive analytic formulae for the vari­
ance of our estimates of E[Y], we manipulated the

Estimating variances for mean discard per
set estimates

ested in estimating the mean of all obser­
vations (including "true zeros") and in
modelling per-set discard, which requires
estimates of p and a. Therefore, we did
not follow their approach because we did
not have any a priori values for p and a.
Reducing counts to simple presence-ab­
sence would have decreased the informa­
tion in the sample such that estimation of
the full set of parameters would not have
been possible.

Estimating variances for model
parameter estimates

The analytic approximation formulae that
we used to estimate the variance of the
individual parameter estimates are based
on the asymptotic normality of MLE's.
Since this method uses the estimates for
p, a, and J.l (rather than their unknown
"true" values) in the information matrix,
it suffers from the tendency for ML estimates
of variance to be biased downwards (e.g.
Efron, 1992). We did not attempt to "bias
correct" these variance estimates.

When a variance estimate is based on a
normal approximation to the sampling dis­
tribution of the parameter, the accuracy
of the approximation should always be in­
vestigated. One way to help validate the
normality assumption is to use results
from bootstrapping to approximate the
sampling distribution. Figure 5 illustrates
some examples for the current data. His-
tograms of the bootstrap replicate parameter esti­
mates for dolphin set data were very skewed. By
implication, the normal-approximation variance es­
timates for the dolphin data. while convenient. are
probably not satisfactory. For school set data, histo­
grams ofthe replicates were slightly skewed because
of a small number of unusually large observations.
Bootstrap standard errors were consistently higher
than the analytic approximations, indicating that the
latter may be optimistic. For log set data, histograms
were close to normality. and bootstrap standard er­
rors were very similar to those from the analytic
approximations. The analytic estimates in this case
are probably appropriate.
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where y is the sample mean. In other cases, the sim­
plified forms for the MLE of E[Y] are slightly more
complex (Eqs. 7 and 8), and Equations 9 and 10 no
longer apply. We did derive expressions, analogous
to Equation 9, for the variance of Equations 7 and 8
in terms of the three model parametersp, a., and 1.1.
However, these formulae are so complex as to be of
no practical use in estimation, and no expression
analogous to Equation 10 seems possible.

Rounding errors in the observations

The NBAZ model used in this study comprises two
components. As noted in the description ofthe model,
zero ·values derived from the NB component can be
interpreted as observations of small amounts of dis­
card, rounded down to zero, whereas zero values from
the probability mass component can be interpreted as
exact zeros. This interpretation is based on the assump­
tion of an underlying continuous distribution for posi­
tive discard amounts (e.g. a gamma distribution) upon
which rounding errors have been superimposed.

One consequence of this interpretation is that the
mean amount of discard that should be associated
with "true zeros" is zero, and the mean amount that
should be associated with "NB zeros" is nonzero.
Thus, strict adherence to this interpretation ofzeros
leads to the conclusion that Equation 4 may be an
underestimate of E[Y]. However, if we assume a
strictly decreasing underlying distribution for posi­
tive discard, symmetric rounding of amounts larger
than one-half ton would tend to increase the esti­
mate. In the absence ofa specific model for the round­
ing errors, we did not attempt to correct for any bias
due to rounding.

The EM algorithm for maximizing likelihood

We used a quasi-Newton algorithm to maximize like­
lihood for the parameters p, a., and J1. A useful alter­
native for mixture models, including "added zero"
distributions, uses the EM algorithm to maximize
likelihood (e.g, McLachlan and Basford, 1988; Lam­
bert, 19921. In situations with many covariates, it
provides a well-behaved alternative to the high-di­
mensional gradient search required by general opti­
mization algorithms. The algorithm can be imple­
mented by using standard regression techniques for
generalized linear models. We applied the EM algo­
rithm to the NBAZ using a combination of logistic
regression to maximize likelihood for p and quasi­
likelihood NB regression for 1.1 and a (Lawless, 1987).
However, the logistic regression failed to converge
for the current data because the ML estimate of p
for log sets was zero.

Alternative models considered

We considered but rejected two alternatives to the
NBAZ model: 1) the .1-distribution (a mixture of a
probability mass at zero with a lognormal [Aitchison,
1955; Pennington, 1983]); and 2) a f-distribution
mixed with a probability mass at zero (Coe and Stern,
1982). Both have been used in similar cases where
the data to be analyzed have contained large num­
bers of zeros. The .1-distribution assumes that the
natural logs of the positive observations are distrib­
uted normally, or can be so transformed, and this
assumption was not plausible. The data in this analy­
sis were rounded to the nearest ton and the mode of
the positive observations was one ton. Thus, no trans­
formation could bring these data to even approxi­
mate normality. The gamma mixture model was not
appropriate for the current data because maximum
likelihood estimation for a highly skewed gamma
distribution depends heavily upon small (near zero)
observations. In this study, all observations in that
region were rounded to either zero or one, implying
a large relative measurement error and therefore
potentially poor accuracy. Another more fundamen­
tal reason why we rejected these two models was that
both models mix a continuous distribution on the
positive numbers with a probability mass at zero and
assume that observations from each component re­
main distinguishable. In the current data set, small
positive observations are grouped together with zero
observations, and using an NB in the mixture allows
the model to distinguish between "true zeros" (ac­
tual absence ofdiscard) and "rounded zeros" (discard
so small that it was ignored or missed).

Conclusions

The methods developed here were used to model fish­
eries discard data which were rounded to integer
values and which included widely varying numbers
of zero observations, depending on one or more
covariates. The usual models for integer-valued data
(e.g. the Poisson distribution) did not fit the data at all
well because of the extreme skewness of some of the
observed distributions. The NBAZ is more flexible than
the standard models and provided a much better fit. In
general, the model is applicable to any set of integer­
valued data which exhibit a large proportion of zero
observations combined with long positive tails. Both
categorical and continuous covariates may be used.

Modelling these data with a parametric probabil­
ity distribution allowed us to describe patterns in
the discard in some detail, for example, in estimat­
ing the percentage of "true zeros" in the data. Addi-
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tionally, we were able to examine whether differences
in mean discard were due to different proportions of
zero observations or to different distributions ofposi­
tive observations. In contrast, computing sampling­
based estimates of population mean and variance
would not give any indication of the patterns in the
individual observations. While average or total dis­
card is of significant interest, it is also important to
quantify the amount of discard possible for an indi­
vidual set. Assuming that the parametric model is
accepted as appropriate, one can estimate, for ex­
ample, the probability that, owing to random chance
alone, discard from a particular boat will exceed a
certain limit in a fixed number of sets. One can also
estimate the percentage of zero observations which
actually represent small amounts ofdiscard. Finally,
a parametric model provides a natural framework
for predicting future discard.
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