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Trajectory-based approaches to
estimating velocity and diffusion
from tagging data

Abstract.-Several new models
are developed to estimate the velocity
and diffusion ofa population from tag­
ging data. The new estimators apply
the inverse principle to the individual
trajectories of recovered tags rather
than to their local abundance. These
models require fewer assumptions and
less information than do published
abundance-based methods. Techniques
are presented for a variety of circum­
stances, and both discrete and continu­
ous parameterizations of the velocity
field are included. The sensitivity ofthe
estimators to violations ofthe assump­
tions was examined numerically by us­
ing stochastic simulations. The results
suggest that the estimators are fairly
robust but may fail under certain con­
ditions. Extensions to accommodate
these situations are discussed.
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Tagging experiments have often
been used to delineate animal move­
ments. Historically, many of the
analyses were limited to graphical
portrayals of apparent migration
routes and simple measures of the
net swimming speed. Beverton and
Holt (1957) introduced more rigor­
ous treatments of tagging data
based on the pioneering work of
Skellam (1951). They postulated
that the Fickian diffusion equation
would be an adequate model for the
dispersion of fish due to random
motions and developed a technique
for estimating the diffusion coeffi­
cient from tagging data. Subse­
quently, Jones (1959, 1976) devel­
oped a simple estimation procedure
that distinguished the diffusion and
net drift ofreturned tags. Saila and
Flowers (1969) proposed using a
special case of the advection-diffu­
sion equation (Fickian diffusion
with constant velocity) to model fish
migration and developed a numeri­
cal technique to estimate the diffu­
sion coefficient and net drift. More
recently, Sibert and Fournier (1994)
advocated the use ofa more general
form of the advection-diffusion
equation that allows for mortality
and discrete changes in velocity
among areas. They also developed
a new estimation procedure based
on fitting numerical predictions to
the observed distribution of recov­
ered tags. Similar methods have
been applied to the movements of
passive tracers in the ocean by

Fiadero and Veronis (1984) and
Wunsch (1989).

Beverton and Holt (1957) recog­
nized that the solutions to advec­
tion-diffusion equations are greatly
complicated by heterogeneous dif­
fusion rates and irregular boundary
conditions (e.g. coastlines). They
suggested replacing the diffusion
equation with a system ofarea-spe­
cific equations linked together by
transfer coefficients that measure
the movement across the boundary
ofadjacent areas (box models). This
simple abstraction, as well as oth­
ers like it, has received considerable
attention in recent years, and a
number of papers have dealt with
estimating the transfer coefficients
from tagging data (Beverton and
Holt, 1957; Sibert, 1984; Hilborn,
1990; Deriso et aI., 1991; Hampton,
1991; Schweigert and Schwarz,
1993; Kleiber and Fonteneau, 1994;
Salvado, 1994). In principle box
models are not very realistic be­
cause they assume that movement
within and among boxes occurs in­
stantaneously, but in practice they
may approximate the dynamics well
enough to be useful.

All of the aforementioned proce­
dures (except Jones's) estimate the
movement of a population from the
local abundance of recovered tags.
In contrast, the methods developed
in this paper estimate movement
from the trajectories of recovered
tags. Strictly speaking, the new
models address the advection (ex-
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pected velocity) and diffusion ofa population. As such,
they should provide useful alternatives for estimat­
ing the movement parameters of the advection-dif­
fusion equation or individual-based simulations.
They are applicable to box models only to the extent
that such box rilodels are analogous to finite differ­
ence approximations to the advection-diffusion equa­
tion. (In that case the transfer coefficients can be
written as functions of the local velocity and diffu­
sion rates.)

This article is divided into five sections. The first
section highlights the conceptual differences between
trajectory-based and abundance-based estimators of
velocity. The mathematical details of the proposed
trajectory models are developed next. Section two
focuses on the process ofadvection and section three
on the process of diffusion. The performance of the
models and their sensitivity to violations of the as­
sumptions are evaluated by using stochastic simu­
lations in the fourth section. Finally, some practical
considerations and extensions to the methodology are
discussed.
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The first integral in Equation 2 determines the
expected position of the tag, and the second integral
determines the displacement of the tag relative to
its expectation. In terms ofa group oftags with com­
mon starting points, the first integral describes the
advection of the group as a whole, and the second
integral determines how the group spreads about its
expected center of mass.

Approaches to estimating velocity

The purpose ofestimating movement rates and other
parameters from tagging data is usually to elucidate
the behavior ofa larger population-often within the
context of managing that population. Any such ap­
plication implicitly assumes that the tagged and
untagged members of the population move the same
way. This basic tenet is accepted throughout the re­
mainder of this article. The discussion in this sec­
tion focuses on the ancillary assumptions that dif­
ferent estimation approaches must make.

The classical formula for estimating the advection
of a tag is

(1)

where n is the number of observations. Jones 0959,
1976) developed an alternative formula, which, in
the present notation, is

The practicality of the estimators (Eqs. 3 and 4) is
limited because for these the advection field is as­
sumed to be relatively constant, which is unlikely
over the temporal and spatial scales relevant to popu­
lation management. Therefore, it will often be prof­
itable to enlist a more dynamic model of advection.
The parameters of the dynamic model can be esti­
mated by minimizing an appropriate objective func­
tion of some measure of the effect of advection on
the population. To date, the measure of choice for
tagging data has been the local abundance of recov­
ered tags. The measure used in this article is the
trajectory of each individual tag.

The accuracy of any estimator depends on the as­
sumptions behind the construction of the objective
function. These involve assumptions regarding the
probability density ofthe measure and the structure

General concepts

Velocity, advection, and diffusion defined

The term 'velocity' refers to the speed and direction
in which an object (tag) moves. Mathematically, the
velocity U at position x and time t is defined by the
differential equation

U(X t)= dx .
, dt

The map of U that assigns a velocity to each point in
space and time is called the velocity field.

In theory, the position ofany given tag at any given
time can be predicted from its velocity history by in­
tegrating Equation 1. In application, however, it is
usually more practical to describe the collective ve­
locity histories of a group of tags in terms of a com­
mon expected component u(x,t) and unique random
components u '(x,t>. The expected component is known
as the advection field, and the random component
gives rise to the diffusion field. By using this descrip­
tion, the position x iT of the i'th tag after T units of
time can be expressed in the general form

tiO+T tiO+T

xiT =xiO + Ju(xt,t)dt + Ju'(xt>t)dt, (2)

tiO tw

where Xw and tw are the initial position and time,
respectively.

~ 1~ X"T -X'Ou=-LJ & I,

n ;=1 7i

n

LXiT -xiO
U= .:.i=""'I=-- _

n

L1i
;=1

(3)

(4)
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ofthe measure's predictor. 1b illustrate, consider a least­
squares objective function whose measure is the num­
ber N of tags recovered in each area a and season s:

(5)
s a
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tiO +7}

E R [XiT] = XiO + Ju(xt,tldt +
tiO

The expected position of a recovered tag under the
same conditions is

The predictor, N, is a function of the parameters of
the underlying population dynamics and advection
models.

In theory, the parameter estimates that minimize
Equation 5 are unbiased if the measure (N) is nor­
mally distributed with constant variance and the
models behind the predictor are correct. It is gener­
ally recognized, however, that the probability den­
sity of recoveries is nonnormal and the variance in
N may differ widely among areas and seasons, both
of which imply that the least-squares solution is in­
appropriate. For this reason, most of the recent lit­
erature has favored maximum-likelihood solutions
based on the multinomial distribution instead.

The condition of the predictor (N) is more diffi­
cult to assess because it embodies a suite of assump­
tions regarding all relevant aspects of the popula­
tion dynamics. The local abundance of tags may be
affected by processes common to both the tagged and
untagged populations (e.g. natural and fishing mor­
tality) as well as by processes that are unique to the
tagged population (e.g. tag-induced mortality, tag
shedding, and failures to report recovered tags).

It would be advantageous to develop a predictor
that does not need to account for all the complex pro­
cesses affecting tag recoveries, but it is clear that a
measure other than abundance must be used. The
trajectories ofindividual tags, which can be predicted
from their velocity history alone, is one such mea­
sure. Tag recovery rates are relevant to trajectories
only in the sense that they determine those most
likely to be represented in the sample. That is, re­
covery rates dictate the probability density of ob­
served (recovered) trajectories, but not the predic­
tor. This point, though subtle, has important implica­
tions with respect to relaxing the assumptions required
to produce unbiased estimates of the advection field.

Consider that the expected position of a tag after
liberty time Ti follows from Equation 2:

tiO +7}

E[XiT] =XiO + Ju(xt,t)dt.

tiO

(6)

where the subscriptR indicates that the expectation
includes recovered tags only. The second integral
dropped out ofthe unconditional expectation in Equa­
tion 6 because u' is, by definition, a random variable
with mean equal to zero. The same would not gener­
ally be true of the expectation of recovered tags be­
cause some vectors of u' may be more likely to be
recovered than others-changing the probability den­
sity in some unknown way.

Suppose there exists an objective function O[x,x]
(maximum likelihood or otherwise"> that can produce
unbiased estimates of E[XiT] from a random sample
of all potential trajectories x iT• (The construction of
this function will be discussed later.) The same ob­
jective function will also produce unbiased estimates
from a random sample of recovered tags provided

(7)

This constraint is satisfied if either u' is everywhere
identically zero or the probability ofrecovering a tag
is independent of its velocity. The latter condition is
effectively equivalent to assuming that the processes
that influence tag recovery are homogeneous in space
and time. It satisfies Equation 7 because it implies
that the relative likelihood of observing any given
displacement depends solely on the probability den­
sity of u·. By definition, the expectation of u' at ev­
ery point is zero and therefore the expectation of the
integral sum of u' is also zero.

It has been shown that, subject to Equation 7, tra­
jectory-based estimators can provide unbiased esti­
mates of the population advection field without re­
covery rates having to be considered. One can imag­
ine many practical situations where Equation 7
would be approximately satisfied. The spatial and
temporal distribution of recovery rates would not
normally be a significant factor in experiments in­
volving radio-tracked drifter buoys or ultrasonic tags.
Similarly, variations in the velocity of individuals
might be expected to be small compared with the
average velocity of a population undergoing a sea­
sonal spawning migration. Where Equation 7 is not
met, however, tags moving at different velocities may
not be equally represented in the recovered sample.
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If, for example, faster tags were more likely than
slower tags to move into a region where recovery
rates are high, then the speed of the advection field
would be overestimated.

At this point it seems convenient to examine the
proposed trajectory models in closer detail, noting
that recovery factors other than advection do not need
to be considered when Equation 7 is satisfied. The more
complicated matter of accounting for variations in re­
covery rates when Equation 7 is not met is deferred to
the Discussion section at the end of this article.

can be obtained from any tag that has remained in
that strata the entire time between its release and
recovery (or between any two position updates) by
using the formula

X"T -X"Ou" = t I
J 7i

Ifobservations are available for most ofthe strata
of interest, the entire advection field can be para­
meterized quite nicely by using a two-way analysis
of variance (ANOVA) model:

Trajectory-based predictors for
estimating advection

This section focuses on developing the predictor for
the directed (advective) component of motion from
the trajectories of recovered tags. The remaining
portion ofthe objective function, which quantifies the
differences between the observed and predicted val­
ues of the measure, depends on the nature of the
probability density and is discussed in detail in the
subsequent section entitled "Diffusion and the ob­
jective function."

The general form of the trajectory predictor may
be written

(9)

where u j = the observed velocity of tag i;
u = the overall mean velocity;
Aa = the main effect of area a on u;
8 s = the main effect of season s on u;
las = the area/season interaction effect; and
Ej = the error associated with tag i.

In two spatial dimensions a separate ANOVA would
apply to each velocity component:

Ui =u +Aau +8su +Iasu +Eiu'

Vi =V +Aall +8s11 +Iasll + Eill'

Piece-wise models

This approach seeks to assemble a picture ofthe over­
all advection field from estimates of the advection
fields in smaller strata. An independent estimate of
the average advection in each space and time strata

where xiT = predicted position of tag i after time at
libertyT;

u = estimated advection field;
xjO = initial position of tag i; and
t iO = initial date of tag i.

In order to use this prediction equation, one must be
able to evaluate the integral on the right. There are
two ways to address this problem. One way is to break
the temporal and spatial domain into small strata
where the advection rates are approximately con­
stant and then to assemble a picture ofthe large-scale
advection field in piece-wise fashion. The other way is
to define explicitly a dynamic model of the advection
field and to evaluate the integral directly. Each ap­
proach is developed in a separate subsection below.

where ui = the observed velocity in the direction
of the first dimension;

Vi = the observed velocity in the direction
of the second dimension;

A a = the main effect of area a on U or V;

8s~ = .the main effect of season s on U or V;

las_ = area/season interaction effect on U or
v; and

EC = the errors associated with tag i.

Interpolation routines other than ANOVA may also
be used to describe the overall advection field, but
ANOVA provides a convenient framework for test­
ing whether the advection rates vary among strata.
Such tests are valid if the velocity variances are the
same in all strata; otherwise one must employ an
equivalent nonparametric approach.

ANOVA or other interpolation algorithms are well
suited to situations where the positions of tags can
be updated frequently. They are especially promis­
ing for programs that employ remote tracking de­
vices such as radio or ultrasonic tags (e.g. Quinn,
1988; Hines and Wolcott, 1990; Schulz and Berg,
1992). In some cases the biology ofthe organism may
even permit effective visual tracking (e.g. Stacho­
witsch, 1979). The ANOVA approach is less suited to

(8)
iiT tio+TiJdx = Ju(xt,t)dt,

XiO t iO
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Figure 1
Schematic of a region divided into three areas illustrating
the definition of the area boundaries, B.

conventional tagging programs because the ability
to record the position of the tag is largely beyond the
control of the investigator. In this situation a suffi­
cient number of tags would need to be released in
each season and area strata to ensure that at least a
few would be recovered before straying into other
strata. The recovery times must also be short enough
to avoid biasing the results toward slower moving tags.

A more flexible estimation procedure, which is ca­
pable of incorporating trajectories that reflect the
combined effects of several different movement pat­
terns, can be derived by reformulating Equation 8 as

8.

Area a Area a+1 Areaa+2

when U < o.

If u(x,t) is held constant within specific space and
time strata but allowed to vary among strata, then
Equation 10 may be piece-wise integrated. The solu­
tion simplifies to

Xs+l =

[t 1
- t -Ba - Xs - Ba _1 - Ba J B (12)

s+ s ... ,un,s + n+l'
Uas ua-l.s

Here Uas = velocity in area a during season s;
Ba = boundaries of the areas (see Fig. 1);
a. = first area occupied by the tag during

season s;
Q = last area occupied by the tag during

season s;
t s = date at the onset of the s'th season; and
Xs = position of tag at onset of s'th season.

Continuous models

The approach proposed in this section involves de­
veloping an adequate continuous model of the ad­
vection field, u(x,t), and solving Equation 8 for x as a
function oft. To illustrate, consider a fish population
migrating out of a basin. Suppose each fish swims
initially at speed U o in the positive x direction and
increases its speed as it proceeds. Further, suppose
that periodically the fish are either helped or hin­
dered by sinusoidal oscillations in the water currents.
A reasonable model for the velocity of the fish might
be u(x,t) =Uo + ax + bsin[ct]. The solution is

between the observed recovery positions and those pre­
dicted with the recursions. (The appropriate objective
function will be discussed in the section on diffusion.)

The sequential procedure itselfis accomplished by
first determining the starting season So and starting
area a for each tag from the date and position where
it was released. The position of the tag at the end of
the first season (start of season so+l) can then be
obtained from the recursions, by replacing Xs and ts
with the position and date of release. The recursions
are then applied as given until the last season, which
is detennined by the recovery date. Finally, the formula
for estimating the recovery position is obtained by re­
placing ts+1 in the recursions with the recovery date.

(10)

J
(11)

... un,s +Bn ,

X"T t"o+T
I 1 "

J-dx= Jdt.
u(x,t)

XiO tjQ

Xs+l =

[
t I-t _ Ba+1 -xs _ Ba+2 -Ba+1
s+ s

Uas u a+l,s

when U > 0, and

The best estimates of the parameters uO' a, b, and c
would be those that minimize some appropriate func-

With these recursions, the position of the tag at
the end of each season can be computed from the
tag's position at the end of the previous season by
using an estimate of the advection field. This proce­
dure can then be applied sequentially to compute the
expected position of the tag at the date when it was
recovered from its initial position. The "best" esti­
mates of the strata-specific advection rates would
minimize some objective function of the differences

Uo b a sin [ct] +ccos[ct] at
X=--- +ye

a a 2 +c2
'

where

_( Uo baSin[cto]+ccOS[cto]) atoy- xo+-+e .
a a 2 +c2

(13)
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tion of the difference between the observed and pre­
dicted positions of all the tags.

In practice, models capable of effectively captur­
ing the dynamics of the advection field may not be
simple enough to admit an analytical solution. The
obvious alternative is to evaluate the right-hand in­
tegral in Equation 8 numerically. Press et a1. (1986)
contributed an excellent review ofmany of the more
powerful numerical integration algorithms.

It may also happen that the system is not under­
stood well enough to construct a detailed model of
tag motion. In that case there is no equation to inte­
grate, analytically or otherwise. One option is to re­
sort to the piece-wise methods described earlier.
There is, however, a second option available provided
the effects of space and time on advection are sepa­
rable, i.e. provided Equation 1 may be recast as

resent G and H. Although the functions must be flex­
ible enough to accommodate a wide range of move­
ment possibilities, they must also be compatible with
the search routine used to find the best estimates of
the parameters. When polynomials are used, for ex­
ample, the search tends to converge on the trivial
solution G = H = O. Depending on the search algo­
rithm, it may be possible to impose constraints that
circumvent such problems. In any case, it may help
to use a theoretical model for either the spatial or
temporal aspect ofthe problem. For example, ifthere
is evidence to suggest that the pattern of motion is
periodic, one might write

.TT to+T

f g~X] dx = f sin[dt - dl]dt,
%0 to

dx
g[x] =h[t]dt, (14)

where the frequency (c) and offset parameter (d) are
known. The corresponding least-squares function to
be minimized is

where g and h are functions of space and time, re­
spectively. In this case the right and left sides of
Equation 14 may be integrated separately:

L(G[XiT] - G[XiO] - H[tiQ + 71] +H[tiO J)2.

The corresponding advection field would be obtained
by the formula

u[X t]= dH("dG)-l
, dt dx

It may not always be possible to derive the func­
tions G and H from g and h, but g and h can always
be derived from G andH (provided they are continu­
ous on the interval). To the extent that Equations 15
and 16 are equivalent, the suggestion is to pose flex­
ible functions for G or H and to fit them to the data
by minimizing their differences. The least-squares
fit, for example, would minimize the quantity

Diffusion and the objective function

This section examines the random (diffusive) com­
ponent oftag motion. There are two perspectives from
which to do this: the absolute sense (the displace­
ment of individuals from their expected positions)
and the relative sense (the displacement ofindividu­
als in a patch relative to one another). The distinc­
tion is important because relative diffusion includes
only those physical processes acting within the patch
and implicitly excludes processes that might cause
the patch itself to vary from its expected path. Abso­
lute diffusion, on the other hand, includes random
processes operating on all scales. The trajectory ap­
proaches espoused in this article model each tag with­
out regard to its proximity to other tags; therefore
the statistics they produce are not relevant to the
diffusion of a patch. Accordingly, the remainder of
this discussion will focus on diffusion in the abso­
lute sense.

The function G would be some arbitrary, but flex­
ible, function.(15)

%T

f gfx] dx =G[XT] - G[xo]
%0

to+T

fh[tldt=H[to+T]-H[to]. (16)

to

and

(a proof is given in the Appendix).
The efficacy of the separability procedure will de­

pend on the behavior of the functions chosen to rep-

Measures of diffusion

Two common measures of absolute diffusion are
mean-square dispersion and absolute diffusivity.



700 Fishery Bulletin 93(4). J995

Implications for the objective function

(19)

As mentioned previously, the position of a tag at lib­
erty for time T in a homogeneous diffusion field fol­
lows the normal distribution with mean E[xiT] and
variance {3T. This implies that the displacement of
the tag relative to its expected position (D) is also
normally distributed with mean 0 and variance (3T.
The squared displacements are therefore gamma-dis­
tributed with parameters 1/2 and 1/(2({3T+(12». Ac­
cordingly, the maximum-likelihood estimates for f3
and (12 are those that satisfy the constraints

There are many practical circumstances where it
may be reasonable to assume a constant diffusivity
and to apply Equation 18. Observations in the open
ocean suggest that the turbulent motions in many
regions are approximately homogeneous (e.g. de
Verdiere, 1983; Krauss and Boning, 1987; Figueroa
and Olson, 1989; Poulain and Niiler, 1989). More­
over, Porch (1993) points out that random walk mod­
els of fish movement also exhibit mean-square dis­
persions that increase in proportion to time (provided
swimming speed does not increase substantially dur­
ing the time period of interest).

The maximum-likelihood formulation for an in­
homogeneous diffusion field is unclear. Equation 18
may be acceptable where the random displacements
of the tags increase monotonically with time, but it
will not be acceptable in all cases. When animals are
aggregating to spawn or feed, for example, the effec­
tive diffusivity would be zero or negative. Likewise,
the presence of coastal boundaries complicates the
matter because the diffusivity in one direction is zero.
For this reason, it may be more prudent to consider
methods that are robust to inhomogeneous variances,
such as least-median-of-squares regression (Rous­
seeuw, 1984) and least-absolute-value regression
(Bloomfield and Steiger, 1983),

Estimating diffusivity

to have large random displacements from dominat­
ing the analysis by down-weighting them according
to their time at large.

The variance parameters in Equation 18, f3 and
(12, must either be known or estimated as part of the
search. However, if there is some evidence that the
observation errors are much larger than the displace­
ments attributable to random motions, then Equa­
tion 18 reduces to ordinary least squares. Similarly,
if the random displacements are much greater than
the observation errors, then Equation 18 reduces to

(18)

(17)2 1~( ~)2
ZiT =- £.J XiT - XiT ,

n i=l

By definition then, the diffusivity associated with
homogeneous random motions is constant at f312, and
the dispersion of particles is governed by the advec­
tion-diffusion equation. Under these conditions the
diffusivity is synonymous with the "diffusion coeffi­
cient" of the Fickian advection-diffusion equation.

The time-dependent nature of the mean-square dis­
persion has important implications for the nature of
the objective function used in estimating the param­
eters of the advection field. When the diffusivity is
constant, the positions oftags with initial conditions
i will follow a normal distribution with mean E[xiT]
and variance {3T (Okubo, 1980). In addition, if the
recovery positions are reported with normally dis­
tributed errors, the observed positions ofthe tags will
follow a normal distribution with variance {3T+(J2.
The maximum-likelihood estimates are therefore those
that minimize the weighted least-squares formula

where Xi is the predictor defined by Equation 8. In
effect, Equation 18 prevents tags that are expected

Taylor (1921) showed that the mean-square dis­
persion of particles in a homogeneous random field
increases linearly with time, provided that the par­
ticles have"been at large long enough for their present
motions to become statistically decorrelated from
their initial motions:

Mean-square dispersion is defined as the average of
the squared deviations ofthe tags from their expected
positions. It is usually expressed as a function of
elapsed time T:

where XiT is the predicted position given the esti­
mated advection field, and n is the number oftags in
the sample. The absolute diffusivity is defined as one
half the time rate of change of the mean-square dis­
persion:
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and

where Di =XiT - xiT' These equations must be solved
numerically. When 0 2 is negligible, however, the
maximum likelihood estimator for f3 reduces to

n n2
A 1~ .
f3=- £.J-1 •

n i=l T;

Less efficient estimates off3 and (J2 can be obtained
from a linear regression ofthe squared displacements
on the time at liberty:

where eis a random deviation term. The slope of the
regression m is an estimate of f3 and the intercept b
is an estimate of (J2.

Estimator performance

This section presents the results of a series of sto­
chastic simulations designed to test the efficacy of
trajectory-based estimators. Although no attempt
was made to exhaust the possibilities, a sufficiently
broad range of conditions was examined to validate
the methodology. The experimental design. and re­
sults are discussed in the subsections below.

Experimental design

A factorial design was used to study the behavior of
the estimator in response to the advection field, level
ofdiffusivity, distribution ofrecovery rates, and Dum­
ber of tags recovered. Two hundred test data sets
were generated for each possible combination offac­
tors. The estimators were then applied to each ofthe
test data sets.

Response variables The accuracy ofthe estimators
was quantified by the percent error ofthe parameter
estimates (6) relative to the actual values (Otrue):

1 200 6 °PE =-- L j - true 100%.
200 j=l 0true
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The precision ofthe estimators was quantified by the
coefficient of error tCE),

200{ A }2CE =100% _1_L OJ - °true
200 j=l 0true

The coefficient of error is analogous to the familiar
coefficient ofvariation except that the true values of
the parameters are used in place of the average of
their estimates. Alow CE, therefore, implies that the
estimates are both unbiased and precise.

Factor levels Two advection models were consid­
ered: the sinusoidal model dx / dt =U o+ ax + bsin[ctl,
discussed earlier in connection with Equation 13, and
a discrete model with two areas and semi-annual
seasons. The parameters ofthe first model-uq,a, b,
and c-were valued at 8.6 km·day-l, 0.004 day- , 17.3
km·day-t, and 2n:1365 day-I, respectively. The para­
meters ofthe second model are the area and season­
specific constant advection rates. The rates in areas
1 and 2 were set equal to 5 and 10 km·darl during
the first season and -7 and -4 km·day-l during the
second season. Area 1 extended from negative infm­
ity to 1,000 km and area 2 extended from 1,000 km
to positive infinity.

Two diffusivity ({i2) levels, 0.95 and 822 km2.day-l,
were examined. These levels were derived by assum­
ing that tagged fish move according to the bilateral
random walk model (see Porch, 1993) with an aver­
age speed of 0.5 or 6 meters per second and change
direction an average of once per minute or once ev­
ery five minutes, respectively.

The effects ofvariations in tag recovery rates were
evaluated by dividing the relevant spatial domain
into two zones and by varying the likelihood of re­
covering a tag between them. Three such scenarios
were considered. In the first, the probability of re­
covery was the same in both zones. In the second,
the probability of recovery was ten times higher in
zone A than in zone B (1.0 versus 0.1). In the third
scenario, no tags were recovered in zone B. The
boundary separating recovery zones A and B differed
with the advection models. The demarcation point
was x =400 km in the sinusoidal model and x =0 km
in the discrete model.

Test data Each test data set was generated by shau­
lating the individual paths of a prescribed number
of tags (n). The release positions were randomly as­
signed values between 0 and 200 km when the sinu­
soidal advection model was used and were between
-1,000 and 1,000 km when the discrete model was
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employed. The release dates were randomly assigned
values between day 0 and day 365. These choices
mimic an opportunistic tagging program where the
number of tags released is relatively constant dur­
ing the year. The recovery dates were obtained by
randomly selecting the liberty times from an expo­
nential distribution with parameterZ (instantaneous
mortality rate) equal to 0.4 yrl.

The displacement ofeach tag due to advection was
computed from its release position and from release
and recovery dates by using the solutions to the de­
terminate advection models described above. The
solution to the sinusoidal model is given by Equa­
tion 13, and the solution to the discrete model is given
by Equations 11 and 12. The diffusive effect of ran­
dom motions was then simulated by adding a ran­
dom normal deviate with mean 0 and variance
f3Tkm2• Next, an acceptance-rejection criterion was
invoked to determine whether or not the tag would
be recovered. Candidate tags located in recovery zone
A were unconditionally accepted, but candidate tags
located in zone B were accepted only with probabil­
ity P (=1.0,0.1, or 0). This was done by generating a
uniform random number between 0 and 1 and by
excluding the tag if that number was greater than
the prescribed recovery probability.

The process described above was repeated until a
total ofn recovery positions were accepted. Normally
distributed errors (with variance 25 km2) were then
added to each of the accepted release and recovery
positions to simulate imprecise position reporting.
In this wayan artificial sample of n tag recoveries
was created.

Estimation The predictors were fitted to the test
data by minimizing the weighted least-squares sur­
face described by Equation 19. The predicted posi­
tions were calculated by substituting estimates ofthe
parameters into the same advection equations used
to generate the data. This allowed the analyses to
focus on the interactions ofrecovery rates and veloc­
ity variance without the confounding effects ofmodel
misspecification.

The minimization was accomplished by using the
NeIder-Mead simplex algorithmAMOEBA(Press et al.,
1986), which, although slower than derivative-based
methods such as Marquardt's algorithm, is less sensi­
tive to the discontinuities in the solution surface asso­
ciated with discrete advection models. Heavy penal­
ties were imposed to prevent the search from extend­
ing beyond the bounds of a reasonable domain. For
example, the maximum possible sustained speed of a
migrating tuna might be the sum ofthe cruising speed
of the fish and the maximum speed of the water cur­
rents.

Fishery Bulletin 93(4), 1995

The AMOEBA search was restarted at the point
Po' where a minimum had been found, to avoid local
anomalies in the solution surface. Subsequent "re­
starts" continued until five consecutive sets of pa­
rameter estimates differed by less than one percent.
New vertices were selected for each restart by using
the formula

P R 0.5M· (.. 1, )
ij = Oje • ~,J = ... ,m ,

where Pij is the value ofthej'th coordinate (param­
eter) in the i'th vertex of the initial simplex, A. is a
standard normal variate, and Sj is equal to one if i
equals j and zero otherwise.

Results

This section is divided into two parts, each focusing
on the results pertaining to one of the two types of
advection models.

Sinusoidal model

The estimation procedure generally behaved very
well when the frequency (el ofthe sinusoidal oscilla­
tions was known and the diffusivity was low (0.95
km2.day-l). The CE's, which reflect both accuracy and
precision, were very low regardless of the distribu­
tion of recovery rates (Fig. 2). For the most part, the
estimator continued to perform well at high
diffusivities (822 km2.day-l). When the recovery prob­
abilities were the same in both zones, the estimates
were unbiased and the CE's rapidly decreased with
increasing sample size to less than 10 percent. The
estimates were only slightly biased and similarly
precise even with a tenfold difference between the
recovery probabilities. It was only when no tags were
recovered in zone B (i.e. beyond the 400-km demar­
cation) that the estimates were significantly biased.

The trends were very similar to those described
above when the frequency parameter e was estimated
along with the other three parameters. A few of the
runs, however, failed to converge to acceptable solu­
tions-the weighted least-squares function being an
order ofmagnitude greater than that expected, given
the known diffusivity. This problem is not surpris­
ing considering the oscillatory nature of any peri­
odic surface. Even if the true values of the other pa­
rameters were known, the surface map of the objec­
tive function would be characterized by local peaks
and valleys that vary with the estimate of c. This
behavior is demonstrated by a simplified model of the
residual sum of squares (Fig. 3). Although the ampli­
tudes ofthe peaks and valleys in the more complicated
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Figure 2
Coefficients of error of the estimates for the parameters of the sinusoidal model. The graphs
on the left give the coefficients of error (CE's) under weak diffusivity and the graphs on the
right give the CE's under strong diffusivity. The three curves in each graph correspond to
zone B recovery probabiHties of 0.0 (squares), 0.1 (tria,ngles), and 1.0 (crosses).

model vary (the lowest valley presumably occurring in
the vicinity ofthe true values of the parameters), sev­
eral of the valleys may be deep enough such that the
estimation routine finds a false global minimum.

The convergence problem was eliminated when the
search was confined to a relatively restricted range
of periodicities and was supplied with good initial
guesses. In practice, adequate initial guesses and
relatively narrow ranges can usually be deduced even
from anecdotal data, therefore this should not prove
too serious a limitation to the method. In cases where
the periodicity is totally unknown, one should search
the entire feasible domain with as fine a resolution
as possible.

Piece-wise discrete model

The coefficients of error associated with each para­
meter were, for the most part, very low when the
diffusivity was low (Fig. 4). However, the estimates
pertaining to area 2 were highly biased and impre­
cise when the probability of recovering a tag was 0.0
in zone B. This is not unexpected given that exclud­
ing recoveries in zone B (x>O kIn) all but eliminates
the possibility that any of the recovered tags would
ever have encountered area 2 (x>l,OOO km). Thus,
there is essentially no information on the advection
in area 2 and the estimation routine fails. A similar
result was not observed when the recovery probabil-
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Discussion

The methods advanced in this article are fundamen­
tally different from those cited previously because

Frequency parameter (c)

Figure 3
Map of the function (sin[ct] - sin[ct]j2. where c is the
true va~ue of 0.0172 darl and c represents a,n esti­
mate ofe.

Trajectory-based estimators have several advantages
over their abundance-based counterparts. First,
whereas trajectory models operate in continuous
space and time, tag abundance models are obliged to
operate in discrete space and time (one cannot speak
meaningfully of the numbers of tags recovered at
infinitesimal points). Thus, abundance models suf­
fer from truncation errors that occur when different
positions are lumped in the same category. If the time
and space grid is fine enough, the truncation error
will be minimal, but there may then arise the prac­
tical estimation problem ofhaving very few observa­
tions in any given space-time category.

A second practical advantage relates to the choice
of models. Both trajectory-based and abundance-

they predict trajectories rather than local abundance.
Abundance-based and trajectory-based approaches
both assume that tagged and untagged populations
move the same way, but they differ in the ancillary
assumptions they make. Abundance-based estima­
tors, by their very nature, must enumerate a very
large number of assumptions regarding processes
that could affect the local abundance of the tags. In
contrast, the trajectory-based estimators discussed
so far disregard everything but velocity.

It was demonstrated earlier that trajectory-based
estimators can produce unbiased estimates of the
advection field for the population in general provided
that either the tag recovery rates are homogeneous
in space and time or the velocity variance is small. If
neither ofthe above conditions are met, the estimates
may be biased because faster individuals are more
likely to move through regions with different recov­
ery rates and may, therefore, be overrepresented or
underrepresented in the sample. This is true even if
the data are obtained from archival tags. The simu­
lation experiments, however, indicated that the bias
may not be too severe unless the recovery rates dif­
fer a great deal between areas. Moreover, recovery
rates generally will not be a factor when the tags are
tracked by radio, ultrasonic, or visual means.

These conclusions suggest that trajectory-based
methods are appropriate for many real data sets. In
addition, in many cases they may be much more prac­
tical than abundance-based methods. Although all
ofthe derivations so far have been in one dimension,
it is relatively simple to extend the methodology to
include two or three dimensional movements, as is
done in the second subsection. Finally, a third sub­
section is devoted to discussing the possibilities for
adjusting the estimators to account for strongly
inhomogeneous recovery rates.

Practical utility of trajectory-based estimators
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ity in zone B was 0.1 because a substantial fraction
of the tags in each sample were still recovered in
advection area 2 (see Fig. 5). Some of the tags recov­
ered in area 1 undoubtedly passed through area 2 at
some point as well, further augmenting the amount
ofinformation pertinent to estimating the advection
in area 2.

The estimation procedure did not perform nearly
as well at high diffusivities as it did at low diffusivities
except when the recovery rates were the same in both
areas n.O). In that case the estimates remained unbi­
ased and relatively precise-the CE's having dropped
rapidly with sample size to less than twenty percent
(Fig. 6). The CE's increased dramatically when the
recovery rates differed between zones, mostly reflect­
ing the corresponding increase in bias (Fig. 7).

The trends in the CE's also indicate that localized
increases in recovery rates may improve the preci­
sion of local estimates at the expense of the preci­
sion ofestimates for the other areas. The CE's in area
2 went down with increased recovery rates in zone
B, but the CE's in area 1 went up. This effect, how­
ever, is largely an artifact ofkeeping the sample size
fixed; increasing the fraction of recoveries near area
2 directly decreases the effective sample size for area
1 and vice-versa. In reality, local increases in recov­
ery rates should add to the number oflocal recoveries
more than they subtract from the number of recover­
ies elsewhere, unless the overall recovery rates are very
high and there is a great deal ofmixing between zones.
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Figure 4
Coefficients of error of the estimates for the parameters of the discrete model under weak
diffusivity. The three curves in each graph correspond to zone B recovery probabilities of 0.0
(squares), 0.1 (triangles), and 1.0 (crosses).

based methods must prescribe a velocity model, but
the latter must also specify models for a great many
other processes. Even ifthe velocity model is correct,
abundance-based estimates may still be biased ifany
of the models for the other components are mis­
specified. Furthermore, because abundance-based
methods estimate many parameters, they tend to
require a large amount ofdata. In the absence ofsuch
a large data base, trajectory-based approaches may
be the only reasonable option.

Another attractive feature of trajectory-based ap­
proaches is that they naturally accommodate data from
archival tags. The chronological sequence ofn position
updates from each tag canbe treated as though it were
a sample ofn independent tags with short liberty times.
Conventional abundance-based methods cannot take
advantage ofthis additional information.

Trajectory-based approaches do have their limita­
tions. One is that they are not useful for assessing
aspects of the population dynamics other than ve­
locity. This point is especially important when the
behavior of the population is being investigated
within a management context. Under these circum­
stances abundance-based methods would seem to be
the more viable option because they can, at least in

principle, be formulated to estimate any relevant
parameter. The enormous number ofparameters re­
quired of such models, however, compromises the effi­
ciency ofthe parameter search. Moreover, abundance-

---p= 1.0

PzO.l

P=O.O

Position (km)

Figure 5
Distribution of 2,000 recovery positions generated by us­
ing the discrete advection model and weak diffusivity. The
legend refers to the probability (P) of recovering a tag in
zone B (right side of dashed vertical line). The solid verti­
cal line marks the boundary between areas 1 and 2.
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Coefficients of error of the estimates for the parameters of the discrete model under strong
diffusivity. The three curves in each graph correspond to zone B recovery probabilities of 0.0
(squares), 0.1 (triangles>, and 1.0 (crosses).

Figure 7
Percent error of the estimates for the parameters of
the discrete model under strong dj.ffusivity. The legend
refers to the probability (P> of recovering a tag in zone B.

based estimates of movement and of certain other pa­
rameters, such as fishing mortality, are highly corre­
lated(Hampton, 1991; Porchetal. inpress;Aldenberglt
A number of competing hypotheses may return simi-
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larly low values of the objective function. Trajectory­
based methods may prove very useful in this regard by
supplying independent estimates of the velocity field
that can be fixed in the abundance-based model. This
would both reduce the dimensions of the search and
eliminate some of the con"elation problems. Another
possibility might be to combine the abundance and tra­
jectory-based approaches by including both formula­
tions in the objective function.

The most important limitation of trajectory-based
estimators is that there is no guarantee that they
are unbiased unless either the diffusive displace­
ments are negligible relative to the advective dis­
placements or the recovery rates are fairly homoge­
neous. Fortunately, the validity of the first assump­
tion can be inferred rather easily from the output of
the model itself. Estimates of the mean-square dis­
persion, which reflects the level of velocity variance,
can be obtained by using Equation 17. If the square­
root ofthe estimated mean-square dispersion is neg­
ligible compared with the actual displacement ofthe

1 Aldenberg, T. 1975. Virtual population analysis and migra­
tion: a theoretical treatment. ICES Working Document (Counc.
mtng.) 1975/F. 32 p.
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tag, then the estimated advection field should be rela­
tively accurate. Otherwise the estimates may be bi­
ased, either because the velocity variance is large or
because the advection model is poorly specified.

The simulation results revealed that the estima­
tors were essentially unbiased when the low level of
diffusivity was used in generating the data. The root­
mean-square displacements associated with this level
of diffusivity were on the order of two percent of the
advective displacements. This suggests that random
displacements of at least two percent, and perhaps
much larger, can be considered "negligible." Simula­
tions that are tailored to specific situations are rec­
ommended to determine more accurately the toler­
ance of any particular application.

Extensions to multiple dimensions wi,th
boundaries

The mathematical derivations in this paper were
developed in one dimension and without regard to
barriers, primarily to simplify the presentation. It
may sometimes be convenient to describe tag mo­
tion in this manner, such as when the tags are em­
bedded in a major ocean current. Otherwise, the
methods can easily be extended to accommodate more
complicated scenarios.

Multiple dimensions can be incorporated by con­
structing dimension specific components in the ob­
jective function, e.g.

( A)2 ( A )2L Xi - Xi + Yi - Yi

i /3%1'; /3y1';

where /3% and /3y are the diffusivity parameters in the
two-dimensional space spanned by the coordinates X

andy. The predicted positions are then obtained by
integrating the differential equations describing the
advection field in the two-dimensional space. Al­
though multidimensional equations of motion are
typically more difficult to solve analytically than their
one-dim.ensional counterparts, they can always be
integrated numerically. The other alternative is to
use discrete approximations, in which case the mo­
tion along each dimension can be treated indepen­
dently and no further modifications to the methods
are necessary. The X and Y positions of each tag are
then predicted by separate parameterizations of
Equations 11 and 12.

Barriers to tag motion, such as coastlines or ther­
mal fronts, tend to preclude analytical solutions to
the equations of motion but are relatively easy to
handle in a numerical context. The position of each
tag is updated at regular intervals by numerically
integrating the velocity equations. When the tag
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encounters the barrier, it reacts according to some
prescribed behavior pattern. Subsequently, the nu­
merical integration proceeds as described earlier. The
appropriate behavior prescription depends on the type
of barrier and the nature of the tagged object. Some
common choices include reflecting, absorbing, and stick­
ing barriers-but the suite ofpossibilities is endless.

Extensions to incorporate variable recovery
rates

This part of the article addresses the possibility of
modifying trajectory-based estimators to accommo­
date situations where the diffusive displacements are
not negligible and the recovery rates are not homo­
geneous in time and space. The matter essentially
condenses to determining the theoretical probabil­
ity density of the position of recovered tags so that
an appropriate maximum-likelihood solution can be
formulated. The predictor is not an issue because it
is, by nature, independent of the recovery rates.

The simplest way to approach the problem is in
terms ofsampling strategies. Each recovered tag can
be thought of as a nonrandom selection from the
underlying probability density ofthe tagged popula­
tion. Tags recovered at any specific location x are
therefore misrepresented in the sample by a factor
Pix), which is the probability of recovering a tag at
x. For example, if the underlying probability density
for the in situ positions of the tags was the normal
distribution with variance /31', then the adjusted ob­
jective function would be

(20)

The correction factor PR can be any measure ofthe
relative likelihood of a tag arriving at any given po­
sition. In principle, it can be expressed as a function
of the parameters of the underlying models of the
population dynamics and estimated as part of the
overall parameter search. Towards this end, it is
important to recognize that the only relevant recov­
ery processes are those that vary among tags. For
example, iffaster individuals were not significantly
more likely to shed their tags than were slower indi­
viduals' then tag-shedding would be irrelevant to
trajectory-based models regardless ofits magnitude.
The same would not be true for abundance-based
models because tag-shedding would help to deter­
mine the total number of recoveries. Thus it should
be pos~ible to adjust trajectory-based estimators so
that there are fewer parameters than those required
by abundance-based estimators.
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Bayliff and Rothschild (1974) developed an ap­
proximate procedure for adjusting Jones's estimators
by the level of fishing effort at the time and place
each tag was recovered. A similar procedure could
be applied to the estimators developed here by ap­
propriately weighting the objective function. Equa­
tion 19, for example, could be modified to read

where f;. is the observed fishing effort in the area
where the i'th tag was recovered. Variations in other
factors, such as natural mortality and nonreporting,
could be treated analogously. Bayliff and Rothschild
pointed out that this method of adjustment does not
account for the effort in the time-area strata encoun­
tered by the tag before its recovery. Even so, such ap­
proximate adjustments may be sufficient to reduce the
degree of bias to negligible levels. If true, the estima­
tion problem associated with Equation 20 would be sim­
plified considerably. This is an area that deserves more
attention, perhaps on an ad hoc basis via simulations.

In some situations it may be possible to circum­
vent the problem of inhomogeneous recovery rates
by dividing the feasible domain into regions where
the recovery rates are approximately constant and
by estimating the advection field in each region sepa­
rately. Tags of fish at liberty long enough to have
strayed into any of the other regions would be ex­
cluded from the analysis.
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Appendix

Define a function G such that

X
dxJ- =G[x] - G[xo],

u[x]
Xo

where x is the tag's current position in space, Xo is
the tag's initial position, and u is the velocity.

Then

x'!!:"'J dx =dG[x] .
dx u[x] dx

Xo

From the fundamental theorem of integral calculus

1 dx 1 dxo dG[x]
u[x] dx - u[xo] dx =----a;- ,

which reduces to

1
u[x]=-'

~


