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series ofabundance indices reflects
two sources of random variation: 1)
measurement error arising from
within and between year survey
sampling variability; and 2) true or
"process" error arising from actual
changes in population abundance.
Measurement error in the survey
estimates can be filtered from pro­
cess variability by using auto­
regressive-integrated-moving-aver­
age tARIMA) models (Box and
Jenkins, 1976). However, the esti­
mation of the parameters of a full
ARlMA model for fisheries research
surveys is often problematic be­
cause ofthe relative shortness ofthe
time series, (Pennington, 1985).
Pennington (1985) described an ap­
proach based on an a priori specifi­
cation of an integrated moving av­
erage model in which change in
population size follows a simple ran­
dom walk. Pennington <"1986) and
Fogarty et a1. (1986) have applied
this approach to a number ofnorth­
westAtlantic species or stocks, such
as yellowtail flounder, Pleuronectes
ferrugineus. This approach has be­
come the standard method for de­
riving "fitted" abundance indices
used in the Northeast region
(NEFSC, 1993).

Standardized multispecies bottom
trawl surveys conducted annually
in the spring and autumn by the
Northeast Fisheries Science Center
(NEFSC, 1993) have been integral
to the scientific advice for manag­
ers of the northwest Atlantic fish­
ery resources. Not only do the sur­
veys provide an efficient means of
collecting biological and ecological
information on a suite offinfish and
invertebrates in the Northwest At­
lantic, but they also provide the
principal means of monitoring
changes in population abundance.
The trawl surveys use a stratified
random sampling design in which
stations are allocated to strata
roughly in proportion to stratum
area and are randomly assigned to
specific locations within strata.
Generally, the stratified mean num­
ber or weight per tow is used as an
index ofrelative abundance (Gross­
lein, 1969; Clark, 1979). Such indi­
ces of abundance can be quite vari­
able because of heterogenous spa­
tial distributions (Byrne et aI.,
1981), year to year changes in
catchability (Byrne et aI., 1981; Col­
lie and Sissenwine, 1983), and natu­
ral changes in population abun­
dance. As such, the observed time
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Abstract.-index-based assess­
ments, in which research survey
indices serve as the primary source
ofabundance information, are used
for many commercially harvested
stocks in the Northeast region.
Such assessments generally pro­
vide advice only on trends in the
relative size of the stock. lack a bio­
logical reference point or level, and
lack a decision framework for
drawing statistical inferences
about the state of the resource. We
present a stochastic simulation
technique for inferring population
status relative to an index-based
reference point. We applied an in­
tegrated moving average model to
trawl data on Atlantic wolffish,
Anarhichas lupus, to derive fitted
indices and propose using the lower
quartile (25th percentile) of the fit­
ted indices as a reference point.
From bootstrapping techniques
applied to model residual errors we
empirically characterized the vari­
ance and shape of the parent dis­
tributions of both a fitted abun­
dance index at any point in time
and the lower quartile. Treating
these distributions as jointly con­
tinuous random variates, we gen­
erated the cumulative density func­
tion for the condition Pr<index <
lower quartile). Thus, for any value
of the lower quartile, we can deter­
mine the probability that the fit­
ted index at any point in time lies
below that value of the biological
reference point. An examination of
the joint cumulative probability
satisfying this condition is impor­
tant because it allows us to ascer­
tain quantitatively the likelihood of
correctly deciding whether such a
stock is below a prescribed thresh­
old level.
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While over 400 species offinfish and invertebrates
have been caught in NEFSC's bottom trawl survey
during 1963-92, 62 species are caught consistently
nearly every year (Fig. 1). Roughly half of these 62
species have some economic importance and are
therefore assessed by various means (NEFSC, 1993;
Fig. 2). For the traditionally important groundfish
species, such as Atlantic cod, Gadus morhua, had­
dock, Melanogrammus aeglefinus, and yellowtail
flounder, adequate data are available to .perform a
size or age-structured assessment (yield per recruit
or Virtual Population Analysis [VPA]l. These types
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of assessments are usually accompanied by biologi­
cal reference points based on fishing mortality rates,
absolute stock abundance levels, or both, as indica­
tors for stock sizes below which long-term yield or
productivity may be jeopardized. While survey abun­
dance indices are important to "calibrate" results of
analytical models for these species and stocks, they
serve as the only source of abundance information
to assess the status of the majority of stocks in the
Northeast region (Fig. 2). Research survey index­
based assessments generally provide only qualita­
tive advice on the relative size ofthe stock and typi­
cally do not generate reference points commonly used
by fishery managers.

In this paper, we extend the present procedures of
deriving fitted survey abundance indices to inferring
population status relative to an index-based refer­
ence point in a probabilistic framework through simu­
lation. We use Pennington's (1985) a priori integrated
moving average approach to derive fitted survey time
series and then characterize trends in population
abundance relative to an index-based reference point
defined to be the lower quartile (25th percentile) of
the fitted time series. Our choice of the lower quartile
for a reference point was rather arbitrary. However,
the use ofan interquartile (such as the 25th percentile)
computed from the data series over a range of years
with reasonably high (as well as low) population sizes
probably provides a reasonable reference point and
would serve as such even as the time series lengthens.
We then used a bootstrap procedure to characterize the
uncertainty in both the fitted index and the reference
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Figure 2
Frequency ofassessment types performed on 62 species of
fish consistly caught each year in the Northeast Fisheries
Science Center's autumn and spring bottom trawl survey.

Figure 1
Frequency ofthe number ofyears various species (includes
over 400 fish and invertebratesl occurring in the North­
east Fisheries Science Center's autumn bottom trawl sur­
vey since 1963 and spring bottom trawl survey since 1968.
Data included up to 1992.
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point and provide a probabilistic framework within
which management decisions may be based.

Statistical methods

time series of survey abundance estimates, Yt , are
assumed to be directly proportional to the true popu­
lation size, Zt' and it is further assumed that the sur­
vey index is measured with error, that is Yt = Zt + et
(where the et's are iid NCO, O'e2», then the survey time
series may be represented by

Estimation of abundance indices

Bottom trawl surveys have been conducted in the
autumn since 1963 and in the spring since 1968 by
the Northeast Fisheries Science Center. The surveys
are based on a stratified random sampling design
and are used to develop time series of abundance
indices that are not subject to biases inherent in fish­
ery-dependent data. A detailed review of the survey
sampling design, methodology, and application has
been provided by Grosslein (1969), Clark (1979), and
Almeida et al. (1986). Following Cochran (1977>, the
stratified mean catch per tow is expressed as

(1)

where N = total area of all strata; N h = area of stra­
tum h; Yh = sample mean in stratum h. The true abun­
dance of a fish stock can be modeled as a population
process with a linear stochastic difference equation
of the form

(4)

whereYt is the survey abundance estimates, B is the
backshift operator, and c/s are iid N(O, 0'/,"2). The
autoregressive parameter, f/J, remains unchanged in
Equation 4 while." is the new integrated moving
average parameter that reflects error in the survey
abundance estimates. Appropriate model specifica­
tion is determined by examining the autocorrelation
and partial autocorrelation functions, by estimating
appropriate parameters, and by checking for model
adequacy (Box and Jenkins, 1976). However. this
formal procedure of specifying and adequately esti­
mating parameters is typically hampered by short
time series of data such as those from fishery-inde­
pendent surveys. Pennington (1985, 1986) has pro­
posed an approach based on a priori specification of
the model which addresses: 1) the limitation in the
length of the survey time series; and 2) changes in
the population availability or catchability. Following
Pennington (1986), the true population can be rep­
resented as

where B is the backward shift operator, and all other
parameters are defined as above in Equation 2. If a

(6)

(7)

where the ct's are iid NCO, 0'/) and represent the re­
siduals generated by fitting the model to the observed
data. For the model (Eq. 7)

Assuming the e,'s are iid N(O, O'e2) and independent
of the a/s, then Yt can be represented by the inte­
grated-moving average model:

Here the a/s represent the process variability or those
factors which cause changes in the population from
year t-l to year t (such as recruitment, fishing mor­
tality, migrations, etc.). Pennington (1985) demon­
strated that ifthe model (Eq. 5) and the ratio ofvari­
ances, 0'//0'/,"2, are known, thenzt and the variance of
the estimator can be estimated. If we again assume
the survey index, Yt , to be an estimate of the true
population abundance, Zt' and that the measurement
errors of the index are multiplicative, then

(3)

(2)
Zt =tPIZt-l + tP2Zt-2·· ·tPpZt-p

-81at_l - 82at _2·· .8qat_q ,

where Zt is the population abundance at equally
spaced points in time, t/Ji and 8i are autoregressive
and moving average parameters, respectively, and
at's are independent identically distributed (iid) nor­
mal randomN(O, 0'2) errors. The autoregressive com­
ponent represents "memory," while the moving av­
erage component represents past "shocks" or pertur­
bations in the system. A principal objective of time­
series analysis is to filter the effects ofmeasurement
error in the raw survey abundance indices from "true"
or process variability resulting from changing popu­
lation levels. Box and Jenkins (1976) described a
general class ofmodels that estimate the parameters
in Equation 2 that represent the autoregressive in­
tegrated moving average process. The model can be
expressed in more compact form as
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Assuming that Equation 7 provides an adequate rep­
resentation ofthe actual population levels ofthe time
series, it can be shown from Equations 8-11 that the
bootstrap generated realizations take on the random
component because ofmeasurement error, since (from
Eq.81

transformed survey abundance estimates. For the ith
bootstrap replicate, n values of the model residuals
were randomly selected with replacement (redefined
as c) and added to the predicted abundance esti­
mates (Yt) to obtain n new pseudo-values Yt *. Thus, a
particular realization with the same underlying pro­
cess was generated, where

(11)

(12)

Conceptually, this random resampling of the residu­
als mimicked a hypothetical resampling of the en­
tire time series ofabundance estimates with random
variation generated from measurement error super­
imposed on the underlying process variation (i.e.
variation in population levels). Random sampling of
residuals and generation ofn new time-series pseudo­
values were repeated m times (i.e. m bootstrap rep­
licates were performed). For each i th bootstrap repli­
cate, the prespecified integrated moving average
model in Equation 7 was again fitted to the n new
pseudo-values of the time series by using the same
moving average parameter estimate, iJ. The n new
pseudo-values of the times series and the new fitted
values for the m bootstrap replicates are given as

(8)

Therefore, fitting the model (Eq. 7) to the observed
survey abundance indices provides an estimate of ()
and from Equation 8, an estimate of a2/a2

c• Pen­
nington (19861 notes that this approach has several
advantages over using the raw indices in that: 1) the
resulting model variance is more precisely estimated,
as survey variance is affected by varying catchability
from year to year; and 2) relevant information con­
tained in the other years of the survey is used in
estimates for a particular year. Further, the fitted
survey series is considered to be more precise than
the original series (Pennington, 1985, 1986; Fogarty
et aI., 1986). At this point the fitted index, with suf­
ficient length of time, may be used to characterize
trends in abundance relative to a chosen reference
point. An estimate of the forecast variance of the fit­
ted time series can be calculated (Box and Jenkins,
1976), although the reference point (i.e. interquartile)
is deterministic. Further, if the time series is short,
a correct specification and estimation of the model
parameters will be difficult and parametric estima­
tion of the variance uncertain. To overcome these
constraints, nonparametric methods with boot­
strapping techniques (Efron, 1982) were used to es­
timate the variances of the fitted index and the ref­
erence point as well as to determine the shape oftheir
parent distributions. This approach is particularly
useful in making inferences between the observed
population level as estimated by the fitted index and
the reference point, within a probablistic framework.

and

Bootstrap procedure

Once a maximum likelihood estimate of the inte­
grated moving average parameter, (), has been ob­
tained from Equation 7, "fitted" estimates ofthe sur­
vey population abundance, Yt , with known residual
errors are available at equally spaced points in time,
such that

(13)

(4)

respectively. The lower quartile corresponding to each
of the n new pseudo-values of the m bootstrap repli­
cated time series as

(9)

where Var(at ) =Var[(1-()ct] =(1-())20'e2 =O'a2 (see Eq.
8). The variance of Yt is given by [ A* _* A* A*]q ,q ,q , ... ,q .

1 23m
(15)

(10)

We applied bootstrapping procedures (Efron, 1982)
to the vector of residual errors generated by the in­
tegrated moving average model (Eq. 7) applied to log-

Rather than obtaining new estimates of (J for the
model fitting to each bootstrap replicate, we followed
Pennington's (1985) suggestion that, given the large
variability inherent in marine trawl surveys, a pre­
liminary estimate of iJ between 0.3 and 0.4 appears
to be an appropriate value for estimating an abun­
dance index, and we set the value of iJ to that origi-
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nally obtained from Equation 7. Finally, to complete
the bootstrap replication procedures we made two
final calculations; the mean ofthe lower quartile ob­
tained from the n-fitted pseudo-values ofthe m boot­
strap replicates, and the mean-fitted survey abun­
dance index for each year. These are given as

Making inferences

Decisions made by fishery managers are often based
on the state ofthe resource relative to a chosen man­
agement target or reference point. One question that
forms the basis of management action is the follow­
ing: Given the uncertainty in both the index ofabun­
dance and the value of the chosen reference point,
what is the probability that the index in year t is
less than or equal to the reference point? Statements
of probability and inferences regarding the state of
the resource can be formulated by using the boot­
strap generated data in the following manner: Let
the fitted index for any particular year ( y; )and the
lower quartile (f) generated from m bootstrap rep­
lications be random variates Y l and Y2, respectively.
In addition, assume that Y l and Y2 are jointly con­
tinuous random variates with the density function

This resampling process is conditioned on the set of
residuals from a fitted model to the observed data,
and no distributional assumption is made concern­
ing the structure of the error. The sample size of re­
siduals for the example given here (25 to 30> should
be adequate to characterize the tails of the underly­
ing error distribution, and bootstrap estimates ofthe
mean and lower quartile should have converged suf­
ficiently as the number of resampled replicates m
was performed 1,000 times. As such, the mean and
variances generated by these new realizations of the
time series for both the fitted index and the refer­
ence point, as well as the shape of their parent dis­
tributions, provide the necessary information for
making inferences about the population. Further, this
approach to generating variances and confidence in­
tervals is particularly useful because explicit solu­
tions to the "normal equations" cannot be derived
because ofthe nonlinear nature ofthe equations rep­
resenting the underlying population process
(Rawlings, 1988).

The Atlantic wolffish, Anarhichas lupus, is a cold
water, bottom-dwelling species distributed from the
Newfoundland banks to Nantucket (Bigelow and
Schroeder, 1953). Little is known about the biology
ofwolffish in the western GulfofMaine and Georges
Bank region. Catches ofwolffish in research surveys
are low owing to its rather sedentary behavior and
small, localized populations.

In U.S. waters, wolffish are taken primarily as
bycatch in a mixed groundfish fishery and in other
large mesh otter trawl fisheries. Commercial land­
ings of wolffish in the Gulf of Maine-Georges Bank
region averaged only about 220 metric tons (t) be­
fore 1970, after which they increased by nearly a fac­
tor of six; from 200 tin 1970 to 1,300 t in 1984 (Fig.
3). After peaking in 1984, commercial landings have
steadily declined by about 100 to 200 t per year and
reached 500 t in 1990, the lowest in nearly a decade.
NEFSC spring survey abundance indices have shown
a consistent downward trend, particularly since the
early 1980's (Fig. 3).

Although no formal definition of overfishing pres­
ently exists for wolffish, this resource is presently
considered overexploited and depleted on the basis
of declining trends in commercial landings and sur­
vey indices (NEFSC, 1993). While this may intu­
itively be the correct conclusion regarding the sta­
tus of the resource, there is little guidance in terms
ofits present level relative to its long-term abundance
or to an appropriate reference point for fisheries

An example

f(yl,y2)' In practice, we want to determine the
P(Yl <Y2 ), that is, the probability that Y l , which takes
ofthe value ofYl' is less than Y2 , taking on the value
ofY2' This probability is computed as

P(Y1 <Y2)= J:[J:f(Yl,Y2)dY1]dY2. (18)

Further, we may wish to determine the probability
ofYl being less than Y2 for each possible value ofY2
in its domain and sum the resulting probabilities
giving the cumulative probability distribution func­
tion. Thus, for any possible value of the reference
point, f, we can determine the probability that the
fitted index, y;, lies below the value of the lower
quartile for all possible values. By analogy, this can
be extended to consider the joint probability that two
consecutive years of the fitted survey abundance in­
dices lie below the reference point. This approach
takes into account the uncertainty in both the value
of the fitted survey index for any given year (or two
consecutive years) and the reference point to which
the population level is compared.

(17)

(16)

-;;- 1 ~ ~*
q =- """"q .

m i=l

and
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Figure 3
Atlantic wolffish, Anarhichas lupus, landings (thousands of metric
tonsl and spring bottom trawl survey indices (Jog,,[stratified mean
number per tow]) from 1968 to 1992.

management, or both. Given the data limitations for
wolffish, what value will serve as a reasonable refer­
ence point or proxy for a level of stock abundance
below which the stock may be in jeopardy? For our
example we chose the lower quartile of the fitted
survey abundance indices for wolffish as a reference
point. Admittedly the choice of a computed statistic
and the period of years of the survey indices used
are rather arbitrary; the situation for each species
should be carefully considered and a suitable refer­
ence point agreed upon by fishery managers. How­
ever, no matter which reference point is used, a
simple comparison of a survey index in any given
year with a survey-based reference point fails to con­
sider the variability in each of these quantities.

Results and discussion

Estimates of the stratified mean number per tow
(transformed by natural logarithms) clearly show
declining trends in abundance, and the fitted index
derived from time-series analysis appeared to pro­
vide a good, and less variable, representation of the
observed data (Fig. 4). The maximum likelihood es­
timate of the integrated moving average parameter
(0) was 0.50 [SE(0)=0.20], although it is probably not
reliably estimated as indicated by the relatively flat
maximum likelihood surface between 0 and 0.6.
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Figure 4
Predicted indices derived from an integrated moving aver­
age model fitted to observed Atlantic wolffish, Anarhichas
lupus. spring bottom trawl survey indices Oog.[stratified
mean number per towlJ from 1968 to 1992. Predicted indi­
ces are compared to the lower quartile (25th percentile) of
1968-92 fitted indices as an arbitrary chosen reference point.
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Pennington (1985, 1986) noted similar problems and
concluded that the relative shortness of the time se­
ries of trawl data makes reliable estimation of the
moving average parameter difficult. Although
Pennington suggested using a value ranging from
0.3 to 0.4 appropriate for many stocks, we used the
value of 0.50 because an analysis of the residuals
from the model indicated that they were normally
distributed (P>0.101.

The fitted estimates of abundance over the entire
time series produce an index whose variance is con­
siderably less than the variance of the observed se­
ries (Pennington, 1986), A comparison of a fitted in­
dex to the reference level (i.e. the lower quartile or
25th percentile) derived from the fitted indices should
provide a reasonable evaluation of the stock's status
because these reflect "true" trends in population
abundance from only process variability (the effect
of survey variance has been reduced). The fitted in­
dices indicate that wolffish abundance has declined
since the early 1980's and that by 1990 the index
had fallen below the reference point Hower quartile=
-1.90) to -2.2 (Fig. 4l. In a hypothetical sense, ifman­
agers of this resource considered the lower quartile
ofthe fitted indices a reasonable reference point, the
1990 index might have triggered some action, al­
though it could be argued that the downward trend

Fishery Bulletin 93(2). 1995

itselfmight be cause for concern. However, given the
relative closeness of the fitted value of the 1990 in­
dex (-2.2) to the reference point (-1.9), as well as the
uncertainty in both values, a logical question to ask
is: What is the probability that the fitted 1990 index
lies below the reference point?

Probability statements addressing this question
can be derived from the parent distributions of both
the fitted indices and reference points from the 1,000
bootstrap replications (Fig. 5). For the wolffish ex­
ample, each of these distributions appear log-nor­
mally distributed, the 1990 fitted index exhibiting
slightly more dispersion about its mean (as would
be expected) compared with the reference point (Fig.
5). Both the fitted index and lower quartile means
are nearly identical to the expected values (computed
from the initial integrated moving average model fit),
indicating little or no bias and uncorrelated model
residual errors. Thus, for the time series on wolffish,
an a priori integrated moving average model specifi­
cation appears appropriate to describe the underly­
ing population process.

For any value of the lower quartile we can state
the probability that the fitted 1990 index lies below
that value of the reference point using a discrete
approximation of Equation 18. This simply repre­
sents the area integrated under the joint density

Wolllish spring survey

II 1990 Index

• Lower quartile
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Indices (loge [mean number per tow])

Figure 5
Comparison of empirical distributions of the 1990 spring survey index predicted by an
integrated moving average (IMAl model fitted to 1.000 bootstrapped generated realiza­
tions of the survey time series 1968-92 and the lower quartile (25th percentile) ofthose
predicted indices. The 1.000 realizations of the time series were generated by sampling
with replacement the IMA model residual errors and randomly adding these to the
predicted survey indices.
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where the value of the fitted index is less than the
value of the lower quartile (Fig. 6). The probability
that the fitted 1990 index lies below the estimated
value of the lower quartile (-1.9) is approximately
60% (Fig. 6). Further, because of the shape of the
parent distribution of the lower quartile, the prob­
ability that the 1990 index lies below the reference
point increases rapidly for higher and higher values
of the reference point. For example, the probability
that the 1990 index lies below a value of-i.85, which
is nearly as likely as the bootstrapped mean (Fig. 5),
increases to almost 75% and reaches nearly 85% at
a value of -1.8 (Fig. 61. As an alternative to making
inferences about the level of the population at only
one point in time, fishery managers may wish to con­
sider the likelihood oftwo (or more) consecutive years
jointly falling below the value ofthe reference point.
To address this question, we computed the joint prob­
ability ofthe 1990-91 and the 1990-92 fitted survey
indices falling below our chosen reference point. The
fitted survey indices over the 1990-92 period were
as likely as those over the 1990-91 period to be be­
low the reference point: approximately a 57% prob­
ability that the indices jointly fell below the refer­
ence point. This indicates that current population
levels (as indexed by the fitted abundance indices)
are considerably below the prescribed threshold level
if the lower quartile of the fitted time series were

1.0
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>- 0.6 ..=:c 0.5III
.c
0 0.4...
a..

0.3

0.2
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0.0
2.4 -2.2 -2.0 -1.8 -1.6 -1.4
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Figure 6
Probability that the value of the 1990 spring survey index
predicted by an integrated moving average liMA> model
fitted to 1.000 bootstrapped generated realizations of the
survey time series 1968-92 lies below the value ofthe lower
quartile (25th percentile) derived from the predicted
bootstrapped indices 1968-92.

adopted as the acceptable reference point. It should
be emphasized that an "acceptable" reference point
in this example refers more to choice of the range of
years used for computation of the reference than to
the choice ofthe interquartile, specified in this case
to be the 25th percentile. We advise using a range of
years for the abundance index which represents rea­
sonably high population sizes and then using that
fixed set of years for computation of the reference
point even as the time series lengthens. This would
prevent a ratcheting effect where the reference point
declines as the abundance index declines, while al­
lowing a characterization of the uncertainty in the
reference point.

In conclusion, this technique represents an ad­
vancement for index-based assessments in the pro­
vision of quantitative advice for the management of
fish populations surveyed by research vessels that
are otherwise lacking in data sources. This approach
provides an examination ofthe joint cumulative prob­
ability for the condition Pr(index in year t, t+1. ... ,
t+m < lower quartile) and is important because it
allows the likelihood of correctly deciding whether
or not a stock is below a prescribed threshold abun­
dance or reference point to be ascertained quantita­
tively. We emphasize that the computation of a ref­
erence point from the time-series data is arbitrary
and should be based on a series of observations rep­
resenting reasonably high as well as low stock abun­
dances. Finally, we illustrated these procedures with
trawl survey data for wolffish in the natural log scale,
which when the data are differenced, produces ho­
mogeneity of variance and stationarity of the time
series (Nelson, 1973), It should be noted that
retransformation back to the linear scale is likely to
result in some bias. We did not examine the effects
oftransformation bias in this study but suggest that
these effects be investigated in the future.
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