Abstract.—The spatial distribu-
tions of marine biota are frequently
patchy. Samples taken from these
populations are characterized by val-
ues which are mostly small, relative
to the population mean, and a few
that are very large. It is therefore
difficult to estimate stock size using
conventional methods. We performed
Monte Carlo simulations based on
trawl data for Dungeness crab Can-
cer magister and compared the be-
havior of three estimators of central
tendency: sample mean, geometric
mean, and a lognormal estimate, Al-
though the sample mean is unbi-
ased, results indicate that single es-
timates of the population mean (and
thus population estimates obtained
using area-swept) may be overly sen-
sitive to extreme values; confidence
intervals are large and capture the
true value at a level well below that
prescribed. Estimates of the geomet-
ric mean exhibit more stable behav-
ior about its parameter, with mixed
results for the lognormal estimate.
We propose a conservative approach
based on comparison of trends found
in each of the three estimators.
Moreover, we suggest that abun-
dance of aggregated stocks should
be indexed with an estimator that
has more desirable statistical prop-
erties, such as the geometric mean.
This may reduce error associated
with conventional fisheries stock-
assessment practices and thus pro-
vide for more effective management
of overdispersed stocks.
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Effective scientific management of
fishery resources is dependent upon
reliable measures of stock abundance.
To this end, research trawl surveys
are routinely used in concert with
fishery catch statistics to provide es-
timates of population parameters.
The analytical procedures used often
rely on the assumption that statisti-
cal methods based on normal prob-
ability theory are appropriate and,
as such, that the individuals compris-
ing the population are not aggregated
in space (Elliott 1977). However, ma-
rine biota are commonly overdis-
persed, and frequently it is the loga-
rithms of abundance (or biomass)
which conform to the normal or
Gaussian distribution {(reviewed by
McConnaughey 1991). Rather than
an artifact of sampling, in many cases
this spatial attribute is the product
of behavioral responses and/or physi-
cal processes affecting dispersal (e.g.,
Epifanio 1987, Dew 1990). Samples
taken from these populations are
characterized by mostly small values
relative to the population mean, and
a few very large ones. Under these
circumstances, single estimates of the
population mean from the arithmetic
mean (sample average) may be too
low because very large values are of-
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ten underrepresented at the levels of
sampling effort common to research
trawl surveys. When large catches
are present in a sample, variance es-
timates may become excessively high
(e.g., Otto 1986). This may introduce
a high degree of uncertainty into the
resource management process which,
if ignored, can have potentially seri-
ous repercussions (Ludwig & Walters
1981).

We investigated two alternative
measures of central tendency and
compared their statistical behavior
with that of the arithmetic mean.
These alternatives are the geometric
mean and a model-based estimate of
the arithmetic mean based on log-
normal theory. An evaluation of
trends based on a comparison of the
three estimators is proposed. This
approach may identify error associ-
ated with the conventional index of
abundance, thereby reducing the like-
lihood of false conclusions concern-
ing trends in stock abundance.

Data and methods

Monthly trawl surveys of Dungeness
crab Cancer magister abundance
along the southern Washington coast
provided representative values of
density (n/ha) for analysis with
Monte Carlo techniques. Density data
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such as these are commonly expanded according to
area-swept procedures to produce estimates of popula-
tion size. Both nearshore and estuarine populations
were sampled, and we examined data collected during
four consecutive years. Survey design and methodol-
ogy are discussed in Armstrong & Gunderson (1985)
and Gunderson et al. (1990).

The spatial dispersion of a population determines
the relationship between its mean abundance and vari-
ance, and this information may be used to select an
advantageous data transformation (Elliott 1977).
Strong linear relationships between the means and
standard deviations of our density data (r*=0.98 and
0.70, with P«0.001 and P«0.001 for the coastal and
estuarine areas, respectively) and graphical analysis
of log-transformed data suggested a logarithmic trans-
formation would be appropriate. In order to test this
assumption, the Kolmogorov test for normality was
applied to the density data for each cruise, both before
and after transformation (Table 1). These preliminary
analyses suggested that the density data were lognor-
mally distributed and, as such, that individuals in the
crab population were aggregated in space. However,
lognormal theory cannot be applied directly to any

sample that contains a zero value, since the logarithm
of zero is undefined. Since our data exhibit only the
occasional zero catch, we used the common In (X+1)
transformation to normalize the data. An alternative
approach, when a significant fraction of the data con-
sists of zero catches, would be to use the A-distribution
(Pennington 1983 and 1986, Smith 1988), which is es-
sentially a lognormal distribution with a proportion
(A) of zeros.

The lognormal distribution and parameter
estimation

The lognormal distribution may be represented as a
Gaussian distribution of logarithmic data or, equiva-
lently, as a right-skewed distribution of untransformed
data (Aitchison & Brown 1969). A brief review of the
density function and relevant parameters for the log-
normal distribution appear in the Appendix. There,
and throughout the text, we use the following notation
to distinguish between untransformed and transformed
scales and between population parameters and their
estimates: X represents untransformed density val-
ues, while X (the ordinary sample mean) and s% (the

Table 1
Goodness-of-fit probabilities from Kolmogorov tests for normality with means (Y) and standard
deviations (sy) for log-transformed Cancer magister abundance data. Cruise refers to sequential
trawl surveys (n=number of samples) in coastal and estuarine areas along the southern Washing-
ton coast over a consecutive 4-year period.
Coast Estuary

Cruise n Raw! Log® Y Sy n Raw Log Y Sy

1 35 .006 964 4.20 2.35 20 211 .890 6.96 1.19

2 41 .000 .740 4.64 2.50 20 .129 .816 6.82 1.10

3 42 .000 687 4.95 2.86 20 .909 .651 6.88 .66

4 38 .000 738 6.65 2.13 20 133 207 6.59 .79

5 42 .000 .932 5.30 2.26 20 .167 434 6.34 .56

6 44 .014 287 3.34 1.97 16 373 411 4.90 1.72

7 40 .109 .230 3.08 1.72 20 .004 418 6.04 1.21

8 41 .000 .800 3.59 1.60 20 .088 1.000 5.65 1.21

9 44 .000 .164 291 2.08 20 013 573 5.68 1.36
10 43 .016 .528 3.90 1.78 20 .140 878 5.45 .96
11 44 .007 .102 3.16 2.10 20 172 1.000 4.64 1.16
12 44 .002 .829 3.62 1.93 20 129 705 5.81 1.01
13 44 .000 759 4.55 2.15 20 435 979 6.61 1.04
14 44 .000 507 3.90 2.49 20 311 .960 5.93 1.06
15 44 .000 .306 5.056 2.20 20 .336 981 6.42 1.10
16 44 .000 484 3.62 3.84 20 027 931 6.43 191
17 44 .000 471 3.44 4.94 20 434 922 6.93 .82
18 44 .000 370 3.69 4.73 19 .336 .868 6.82 1.18
19 44 .000 949 4.75 6.89 20 .388 980 6.43 92
20 43 .000 .528 3.90 6.48 20 .010 .964 6.23 129
'P-value for untransformed data.
*P-value for log-transformed data.
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sample variance) are estimators of u and ¢2, the popu-
lation mean and variance of the untransformed data.
Letting Y = In (X), Y and s% are estimators of p, and
0%y, the population mean and variance of the log-
transformed data. Note that in Eq. (A3) and (A4) both
u and o® for the lognormal distribution are functions
of two parameters, W,y and 6%y, making the former
parameters difficult to estimate. In particular, any es-
timate of p involves both location and dispersion pa-
rameters. Therefore, variation in estimating p will come
from two sources: variation in estimating p,y and
variation in estimating ¢ y.

The arithmetic mean (AM) The ordinary sample mean
is an unbiased estimator of u regardless of the under-
lying frequency distribution. When the underlying dis-
tribution is normal, the sample mean is also the mini-
mum variance unbiased estimator (MVU, the one with
the smallest variance of all unbiased estimators) of .
However, the sample mean does not have this MVU
property when the underlying distribution is lognor-
mal (Gilbert 1987). Moreover, the AM is sensitive to
the presence of one or more large data values, particu-
larly for small sample sizes. For lognormal data, these
extreme values are not outliers; they simply reflect
the right-skewed nature of the distribution. Finney
(1941) demonstrated the inefficiency of the sample
mean when the variance of the natural logarithms is
greater than 0.69, and Koch & Link (1970) suggested
using the sample mean only when the coefficient of
variation is believed to be less than 120%. For highly-
skewed distributions such as the lognormal, sample
sizes in excess of 200 may be necessary to invoke the
Central Limit Theorem, which justifies use of the
sample mean for inferences about means of popula-
tions that are not normally distributed (Sissenwine
1978, Jahn 1987).

The Finney-Sichel estimator (FM) Among alternative
estimators that have been investigated is an MVU es-
timator of p (Finney 1941, Sichel 1952), which also
has been described as equivalent to a maximum-
likelihood estimator for lognormal data (Aitchison &
Brown 1969). The Finney-Sichel method adjusts the
geometric mean upwards and is commonly used in gold
and trace-mineral assay work, where ore concentra-
tions are typically lognormally distributed (Sichel 1952).
If Y and s% represent the ordinary sample mean and
variance of the log-transformed values, the Finney-
Sichel estimate for p is

FM = exp(Y) y,(t) (1)

where n is the sample size and y,(t) is the infinite
series

1+ (n-1)t + (n-1y%* . (n-1p
n 2n%n+l) * 3Wn¥n+1)An+3) 2)

(n-1)"¢ .

4In*n+1Xn+3Xn+5)
2

witht = 82—" . The function ,(t) is defined such that
T _ n-1 , lim 2 _ 2.
Elvy.(s?)] =exp ( ral ]and - _)oo[\v,,(s )] = explc®);

it is used extensively with the lognormal distribution
{Smith 1988). In their book, Aitchison & Brown (1969)
included tables of vy, for computing the Finney-Sichel
estimate. More extensive tables are provided in Link
et al. (1971), who claim that linear interpolation be-
tween tabled values gives close approximation for esti-
mates of u. They also include a FORTRAN program
for calculating the y, function, which we used in com-
puting FM, the Finney-Sichel estimate of the popula-
tion mean. (A version of this program may be obtained
from the authors.)

Confidence limits for the lognormal mean are not
symmetric because of the skewed nature of the under-
lying distribution. Hence, it becomes necessary to com-
pute separate upper and lower confidence limits. Land
(1971, 1975) obtained upper one-sided 100(1-c)% and
lower one-sided 100a% confidence limits for the log-
normal mean, where o is the frequency of type I error:

UL yaoor, s 3)
o= €X + —
: P 2 Vn-1
LL S, )
o = + — — |
exp 2 + y n_]_

The quantities H, , and H, [functions of a, (n—1) and
sy] are obtained from tables in Land (1975) for sample
sizes of n>3.

The geometric mean (GM) The geometric mean, e,
will be a biased estimate of u (Appendix) but may be
more precise with respect to its population parameter
than will be the case for estimators of the population
mean. (Actually, E(e¥)=exp(p,y + —12 so the GM is
2noiy
biased even for e'LN, but this bias decreases rapidly as
n increases.) When exponentiated, the population mean
of the transformed data, iy, is the geometric mean
catch and, equivalently, the median catch for lognor-
mal data. It remains unaffected by skewness, a func-
tion of [exp(o®~1)]. It is less affected by large values
of X, owing to the nature of a logarithmic transforma-
tion; hence, its sampling distribution is less skewed
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than that for the AM. Aitchison & Brown (1969) note
that “since the arithmetic mean involves both the lo-
cation and dispersion parameters, it is not a pure mea-
sure of the [response variable] under the lognormal
hypothesis: for this the geometric mean or median is
to be preferred.”

Monte Carlo simulations based on
crab trawl data

Monte Carlo simulations consist of calculations made
on data sets whose elements are randomly selected
from specified probability distributions. This approach
permits an evaluation of various point-estimation pro-
cedures on the basis of expected outcomes. It also al-
lows a closer examination of individual cases than is
possible with a purely analytical approach and per-
mits an evaluation of the effects of sample size. For
this investigation, single values of mean density and
standard deviation were calculated for each cruise in
the two trawl locations along the Washington coast.
The means of these statistics were used to define two
representative lognormal distributions, which are iden-
tified as lognormal (4,2) for the coastal area and log-
normal (6,1) for the estuarine area. These distribu-
tions have means of 4.0 and 6.0, and standard
deviations of 2.0 and 1.0, respectively, for the log-
transformed variable; they will be referred to as LOGN
(4,2) and LOGN (6,1) (Fig. 1). From these two prob-
ability distributions, we created 1000 sets of simu-
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Figure 1
Probability density functions for the representative lognor-
mal distributions. Included are reference marks to indicate
values of the respective arithmetic and geometric means.

lated density data for each of 13 sample sizes
{2,4,6.8,10,15,20,25,30,35,40,45,50) using a pseudoran-
dom number generator (Minitab, Inc., University Park
PA). Sample sizes were selected to encompass the range
of values associated with ongoing trawl surveys. Table
2 presents descriptive statistics for each of these data
sets. (These data sets are archived on magnetic tape,
and access can be arranged through the authors.)

We investigated three methods of estimating cen-
tral tendency. The AM method consisted of computing
arithmetic means and traditional confidence intervals
(e.g., at 90% confidence) based on the Student’s
t-distribution. The FM method used the Finney-Sichel
estimator for the mean of a lognormal distribution as
presented in Eq. (1) and (2). For confidence limits, the
method by Land (1971, 1975) as presented in Eq. (3)
and (4) was used. The GM method used e¥ as an esti-
mate of e"N, the geometric mean (or median) in the
untransformed scale. A 90% confidence interval was
derived as follows:

exp [17— £y ST:;] , €Xp (f’+t,,_1 ST:;) (5)

This method estimates a different parameter (the me-
dian rather than the population mean) than the first
two methods. However, because the median is asymp-
totically a function of only a single parameter, p;y, the
GM method tends to give more stable estimates of its
parameter, and it is worthwhile to compare its perfor-
mance as another index of central tendency to the first
two methods.

Comparison measures to evaluate
performance of the estimators

We used the following measures of comparison to evalu-
ate the performance of the estimators: root mean
squared error (RMSE), deviation of the estimate from
the true parameter (BIAS), average length of the 90%
confidence interval (AVL), standard deviation of the
90% confidence interval length (SDCI), and percent
containment of the parameter by the confidence inter-
val estimate (PERCON). These were estimated as
follows:

1000
z (estimated parameter

- from i* data set—true value)® .
1=

RMSE-= 1000

Root mean squared error is a measure of the average
variation in the estimated mean relative to the true
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Table 2a
Descriptive statistics for 1000 simulated trawl data sets representative of coastal popu-
lations of Cancer magister in Washington [Lognormal (4,2)]. Trimmed means calculated
using the central 90% of the individual data sets. Min/Max refer to the minimum and
maximum values in the data set.

Standard
Arithmetic mean Trimmed mean deviation
n Raw* Log® Raw Log Raw Log Min Max

2 431 4.104 192 4.106 1,949 2.026 <1 48,860
4 382 4.003 163 4.004 1,714 1.999 <1 64,248
6 398 3.987 162 3.988 1.946 2.007 <1 62,131
8 370 3.985 157 3.984 1,818 1.982 <1 71,789
10 386 4.001 161 4.002 1,964 1.996 <1 110,761
15 378 4.002 163 4.007 1,723 2.002 <1 82,492

20 391 4.004 162 4.003 1,920 1.997 <1 122,967
25 394 3.999 159 4.002 2,313 1.991 <1 160,546
30 407 4.002 161 4.004 2,603 2.000 <1 236,341
35 422 4.016 162 4.015 3,301 1.992 <1 380,743

40 419 3.999 161 3.999 7,609 1.997 <1 1,479,353
45 397 3.989 162 3.989 2,167 2.010 <1 226,970
50 411 4.003 163 4.003 2,625 2.008 <1 323,734

True value of 1 is 403.43 = exp (4 + 2— ) ; (see Appendix).

® untransformed density (n/ha).
b log-transformed density (n/ha).

Table 2b
Descriptive statistics for 1000 simulated trawl data sets representative of estuarine
populations of Dungeness crab Cancer magister in Washington [Lognormal (6,1)]. Trimmed
means calculated using the central 90% of the individual data sets. Min/Max refer to
minimum and maximum values in the data set.

Standard
Arithmetic mean Trimmed mean deviation

n Raw* Log® Raw Log Raw Log Min Max

2 633 5.968 528 5.971 739 994 10 5,703
4 676 6.007 552 6.007 860 1.012 10 10,525
6 682 6.026 557 6.024 924 .993 1 24,259
8 690 6.010 5563 6.006 955 1.016 12 20,499
10 659 5.993 541 5.995 835 1.004 6 13,333
15 650 5.986 537 5.986 816 .993 12 18,877
20 655 5.992 538 5.993 825 .998 8 13,756
25 667 6.000 544 5.999 868 1.003 4 19,785
30 664 5.995 543 5.995 857 1.004 5 21,060
35 664 5.999 541 5.998 901 .995 7 30,309
40 657 5.996 540 5.995 844 .993 9 20,555
45 666 6.004 547 6.004 869 997 6 30,655
50 664 6.001 544 6.002 856 .998 7 18,725

2

1
True value of p is 665.14 = exp (6 + ; ] ; (see Appendix).

* untransformed density (n/ha).
b log-transformed density (n/ha).
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mean density and, as such, is a measure of accuracy.
For any unbiased estimator (e.g., the AM or FM, where
the expected value of the estimator is the parameter
itself), the RMSE is the same as the variance of the
estimator, in terms of expected value. For a biased
estimate (recall that GM has positive bias in estimat-
ing e*uN, which decreases as n increases), RMSE incor-
porates both bias and variance.

1000

2 (estimated parameter
from i*" data set—true value)

i=1

BIAS= 1000

= (average value of estimated parameter—
true parameter).

The bias is the average amount by which the estimate
tends to “miss” its respective parameter.

1000 1000
> (UL-LL), Y. length,
AVL = i=1 - i=1
1000 1000

where (UL-LL), = length of a single 90% confidence
interval for the i*" data set. The average length is a
measure of precision.

1000

Y. (ength,— AVLY
SDCI =YL
1000 - 1

The standard deviation is a measure of the spread
of the confidence-interval lengths around the average
length. An estimator with the most reproducible esti-
mate of the precision of the estimated mean would
have confidence intervals of relatively low variability
in length.

The frequency with which a confidence interval in-
cludes the true value of the parameter defines the con-
tainment rate, PERCON. If the assumptions of sam-
pling and the appropriateness of statistical model are
met, 90% confidence intervals should contain the den-
sity parameter being estimated approximately 90% of
the time.

The three estimators of central tendency (AM, FM,
GM) and their confidence intervals were also calcu-
lated for actual density data obtained during the
monthly trawl surveys. Two large systems, termed the
Coast and the Estuary, were considered.

Results

Monte Carlo simulations

Root mean squared error The RMSE was consis-
tently lower for the GM than for the other measures of
central tendency (Fig. 2). The FM provided point esti-
mates of | that were consistently more accurate (ex-
cept at very small sample sizes) than the AM method,
particularly as skewness of the density data (Fig. 1)
increased. The RMSE of GM estimates and of p ob-
tained with the FM declined steadily as sample size
increased, whereas that for the AM. although gener-
ally declining, was somewhat less regular and much
more erratic (see Fig. 2a, n=40). Closer inspection of
the LOGN (4,2) data set revealed a single extreme
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Figure 2

Comparison of root mean-square error (RMSE) values associ-
ated with the three estimators of central tendency according
to sample size. (a) LOGN (4,2) data representative of coastal
population of Cancer magister used for Monte Carlo simula-
tions. See text for outlier explanation. (b) LOGN (6,1) data
representative of estuarine population of C. magister used for
Monte Carlo simulations.
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value out of 40,000 data points that caused a consider-
able increase in the RMSE associated with the AM
estimate. It is noteworthy that the magnitude of this
simulated density value is in keeping with extreme
values observed in the field. Accuracy of GM estima-
tion improved dramatically as skewness increased, in
contrast to the FM and AM responses wherein accu-
racy decreased as skewness increased.

Deviation of the estimator from the parameter
(bias) Overall, the most extreme deviations were as-
sociated with the smallest sample sizes; this disparity
decreased as sample sizes increased (Fig. 3). GM esti-
mates deviated less, stabilized at smaller sample sizes,
and, despite the positive bias, converged much more
predictably to e*LN than did AM and FM in estimating
. In general, estimates of p oscillated about the para-
metric value and converged as sample size increased.
The absolute values of the deviations from 1 are smaller
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Figure 3

Comparison of degree of deviation from the parameter (bias;
scaled to 0) for the three estimators of central tendency ac-
cording to sample size. (a) LOGN (4,2) data representative of
coastal population of Cancer magister used for Monte Carlo
simulations. (b) LOGN (6,1) data representative of estuarine
population of C. magister used for Monte Carlo simulations.

for the FM than for the AM method in 17 of the 26
cases examined, without an obvious trend related to
the skewness of the data. It is noteworthy that esti-
mates of 1 obtained with the AM and FM methods are
equivalent when n=2.

Average length of the interval estimate The aver-
age length of the 1000 90% confidence intervals (Cls)
calculated for each sample size was consistently shorter
for the GM (which only estimates one parameter) than
for the intervals of the AM or FM (Fig. 4). Intervals
calculated using the FM method were consistently
larger than those for the AM method. Overall, the de-
gree of difference between the three estimators
decreased as sample size increased and as skewness
decreased. Average lengths were inordinately large at
the smallest sample sizes and decreased rapidly there-
after. The average CI length for the GM decreased as
skewness increased, in contrast with the behavior of
CI lengths for p.
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Comparison of average length of 90% confidence interval for
the three estimators of central tendency according to sample
size. (a) LOGN (4,2) data representative of coastal popula-
tion of Cancer magister used for Monte Carlo simulations. (b)
LOGN (6,1) data representative of estuarine population of C.
magister used for Monte Carlo simulations.
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Standard deviation of the confidence interval
length The standard deviation of the 1000 90% Cls
calculated for each sample size was consistently lower
for the GM than for the AM or FM, both in an absolute
sense and relative to the average CI length (Fig. 5). At
smaller sample sizes, the standard deviations for the
AM were less than those for the FM. However, this
pattern was reversed at larger sample sizes such that
the FM had the more precise interval estimates (note
the crossovers at n=35 and n=25 in Figs. 5a and 5b,
respectively). Overall, the precision of the interval es-
timates declined as sample size decreased and as skew-
ness increased; the effect was most pronounced for the
FM method. The GM response was unique in that pre-
cision increased as skewness increased. Of particular
note is the dramatic loss of precision of the AM inter-
val estimate apparent in Fig. 5a (n=40) which, upon
investigation, was attributed to a single extreme value.
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Figure 5

Comparison of standard deviation of the length of 90% confi-
dence interval for the three estimators of central tendency
according to sample size. (a) LOGN (4,2) data representa-
tive of coastal population of Cancer magister used for Monte
Carlo simulations. (b) LOGN (6,1) data representative of
estuarine population of C. magister used for Monte Carlo
simulations.

Parameter containment within the interval
estimate The GM parameter e"IN occurred within its
interval estimates, as did u within the intervals ob-
tained by using FM, at the prescribed 90% confidence
level (Fig. 6). The rate of GM containment oscillated
within 1-2% of this level under all circumstances. Con-
fidence intervals for the FM contained p at the rates of
89.1-92.3% (Fig. 6a) and 89.1-93.6% (Fig. 6b); the high-
est percentages were associated with the smallest sample
size, perhaps due to their relatively greater lengths
(Fig. 5). In contrast, AM interval estimates contained
u at rates of 47.7-65.8% (Fig. 6a) and 76.9-85.3%
(Fig. 6b), well below the prescribed level of confidence.

Dungeness crab trawl survey data

We also computed the three estimators for actual C.
magister density data to assess the gain in informa-
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Comparison of percent occurrence of the parameter in the
90% confidence interval for the three estimators of central
tendency according to sample size of Cancer magister. (a)
LOGN (4,2) data representative of coastal population of C.
magister used for Monte Carlo simulations. (b) LOGN (6,1)
data representative of estuarine population of C. magister
used for Monte Carlo simulations.
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tion over using any single estimator alone. For the
Estuary data, trends in abundance routinely paral-
leled one another, differing only by their relative mag-
nitude (Fig. 7a). Characteristically, estimates of i from
the survey data obtained with the FM method exceeded
those of the AM, which, in turn, exceeded estimates of
the GM parameter (e".N). In some cases, trends in the
Coast estimates were diametrically opposed (Fig. 7b).
As expected, the GM estimate was consistently lower
than both AM and FM, reflecting the difference in the
population parameter being estimated. Noteworthy was
the reversal in the relative magnitudes of the AM and
FM estimates during the interval between Cruise 2
and Cruise 4.

Discussion

Conventional analysis of catch data and
alternatives

Population estimates are routinely generated using
untransformed catch data and arithmetic mean calcu-
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Figure 7
Comparison of three measures of central tendency calculated
for Cancer magister using monthly cruise data for (a) the
estuarine area (year 3) and (b) the coastal area (year 1).
(The order of the coast/estuary figures is deliberately reversed
here to illustrate certain results; see text.)

lations (e.g., BIOMASS procedure of the U.S. NMFS,
Gunderson et al. 1978; STRAP procedure of Can. Dep.
Fish. & Oceans, Smith & Somerton 1981). Several
methods for reducing the variance associated with these
estimates of abundance have been used, often despite
recognizable limitations. These fall broadly into two
categories: (1) model-based approaches, which model
the underlying distribution of the data, and (2) design-
based approaches, which rely upon probability sam-
pling and large sample results. Smith (1990) compared
the two approaches for estimating resource abundance
with trawl surveys and concluded with an example of
a model-based predictive estimate using additional in-
formation (salinity, temperature, depth). Other ex-
amples of model-based estimation in fisheries applica-
tions include use of a weighted negative binomial
distribution (Zweifel & Smith 1981), the delta distri-
bution (Pennington 1983), and the geostatistical tech-
nique of kriging (Conan 1985). Stratification of the
sampling frame is a common example of a design-based
approach. Although this is theoretically appealing,
Gavaris & Smith (1987) have demonstrated that strati-
fied random sampling may be inferior to a simple ran-
dom design, because of suboptimal allocation of sta-
tions to strata. They suggest that a decrease in the
number of strata used in the eastern Scotian Shelf
groundfish survey would provide for more flexible allo-
cation of total sampling effort in the future. Unfortu-
nately, many of the problems attendant with specify-
ing stratum boundaries will persist; these include
interannual variability in distribution and abundance
of stocks related to environmental factors and the typi-
cal multi-species scope of most research trawl surveys.
Because of these difficulties, catch data are commonly
stratified after sampling is completed (Picquelle &
Stauffer 1985, Otto 1986). However, post-stratification
(i.e., a priori examination of catch data for the purpose
of assigning strata) is not a valid approach and is not
recommended (Cochran 1977).

Other methods for estimation of abundance are ex-
pedient, yet may be based on the specious assumption
that extreme values are “outliers” and are therefore
not integral to the data set. Included is the practice of
eliminating extreme values or the use of trimmed (or
Winsorized) means (Halliday & Koeller 1981, Bates
1987, Harding et al. 1987, Smith 1981). Ignoring in-
stances where human error is involved, these ad hoc
procedures may introduce substantial negative bias to
estimates of the true population mean (compare p and
the trimmed means in Table 2), thereby contributing
to misleading conclusions about trends in the data.

Design-based and model-based approaches

A strict probability sampling approach (i.e., design-
based and without any underlying models) requires
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that resulting estimates be normally distributed
according to the Central Limit Theorem. However,
Hansen et al. (1983) state, “When surveys use rela-
tively small samples, the samples may be too small for
the application of the theory {for large samples] to be
essentially assumption-free.” Our approach is model-
based. As long as one is restricted to samples that may
not be considered “acceptably large” (and further ham-
pered by considerable skewness caused by extreme val-
ues), use of a model-based approach is not unwarranted
(Little 1983).

With regard to robustness, Myers & Pepin (1990)
argue that exclusive use of a lognormally-based esti-
mate can be sensitive to model assumptions, leading
to possible bias and reduction in efficiency. Because
contamination of a lognormal distribution with data
from similariy-shaped distributions (e.g., Weibull or
gamma) is difficult to detect for sample sizes less than
40, they suggest using lognormally-based estimators
of abundance only when there is evidence that the
underlying population is lognormal. Obviously, use of
transformations and model-based estimators is a
“double-edged sword,” and these procedures should not
be applied indiscriminately. When appropriate (e.g.,
Table 1), however, significant improvement in the rela-
tive efficiency of the sample average and, in particu-
lar, the estimated variance, can be realized (e.g., Finney
1941, Koch & Link 1970, Myers & Pepin 1990).

A comparative approach

If nothing is known about the spatial distribution of
an organism, the sampling plan must be designed to
determine distribution patterns as well as population
size. Knowledge of the distribution pattern aids in se-
lection of the proper estimation procedure. Based on
the arguments presented above, combined with the
rather ubiquitous nature of overdispersion in the ma-
rine environment, we prefer an approach based on three
estimators, namely the arithmetic mean, the geomet-
ric mean, and the Finney-Sichel estimator of u. By
taking a comparative approach, one may be reason-
ably certain of apparent trends in the data if the trend
is consistent for the three estimators. For the estua-
rine crab population illustrated in Figure 7a, the par-
allel behavior of the estimates corresponded to chang-
ing values of Y coupled with nominal changes in s
(Table 1). In this case, there is no evidence to suggest
that conventional analysis of catch data (i.e., using the
AM method) was less than adequate. However, trends
in the estimates may, on occasion, be opposed to one
another, as was demonstrated for the coastal crab popu-
lation (Fig. 7b). The AMs suggest a precipitous drop in
abundance occurred during the interval between

Cruises 3 (with two extreme values) and 4, whereas
both the FM and GM procedures indicated a moderate
increasing trend during the same period. From the
behavior of the three estimators, we conclude that be-
tween Cruises 2 and 4, |, (and ) may have increased
slightly, but o% (and thus the skewness of the distri-
bution) probably increased and then decreased, affect-
ing the FM and AM estimates (the latter more strongly)
but not the GM estimate. This is verified by checking
the Y and s?; values in Table 1. Changes in skewness
relate directly to the size of the larger catches and,
hence, the degree of spatial aggregation in the popula-
tion. Plotting the three estimators and relating the
trends back to changes in Y and changing s% has
yielded some insight into the behavior of the estima-
tors. It has also allowed us to extract more informa-
tion about the crab population than if we had used
only one estimator, the AM. In cases such as this, where
there is significant disagreement among the estima-
tors, the data set should be carefully evaluated as to
its underlying probability distribution and the most
appropriate index selected. If the lognormal distribu-
tion is reasonable, the GM may well be the preferred
estimator (Aitchison & Brown 1969); use of the GM
may be advantageous because it is relatively insensi-
tive to extreme values (particularly so for highly-skewed
data) in terms of accuracy and precision. Since catch
coefficients are not routinely considered with trawl-
survey data of this type, the resulting stock-size
estimates are, strictly speaking, indices of abundance
(Caddy 1986). Under these circumstances, it may
be advantageous to use an alternative estimator of
central tendency, such as the GM, to generate the
index.
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A random variable X is considered to be lognormally distributed when the natural logarithm of X, Y=In(X), has a
normal distribution. Specifically, if Y is normally distributed with mean p, and standard deviation oy, then X=e¥
is lognormally distributed with density function (Aitchison & Brown 1969)

1 —(In X — py ]
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The kth moment about zero, E(X¥) is expressed as
' owk?
E(X¥) = E () = exp [kum + ";—J : (A2)
In particular,
. o%N
Population Mean = 1 =exp | Uy + 5 | (A3)
Variance (X) = 6 = [exp (6%y) — 1] - [exp (2uy + 0%N)], (A4)

Geometric Mean = Median (X) = exp (ppy). (A5)



