Abstract.— Models used by fish-
eries managers and population ecol-
ogists to analyze or predict the size-
frequency distribution of populations
usually incorporate assumptions con-
cerning recruitment, mortality, and
individual growth that provide math-
ematical simplicity, but also con-
strain the shapes of size distribu-
tions. In this paper we derive a
predictive model for size-frequency
distributions which assumes constant
recruitment and mortality, and Brody-
Bertalanffy growth, then examine
the effects of specific violations of
these assumptions on the potential
shapes of size distributions. Although
bimodal and strongly unimodal size-
frequency distributions are not pos-
sible under these assumptions, the
model indicates that specific age-
related changes in the mortality rate
(Z) and the growth coefficient (K)
are required to obtain these distribu-
tions. Shifts in Z/K with age from
growth-dominated (Z/A'<1) to mor-
tality-dominated (Z/K>1) usually
result in strongly unimodal size-fre-
quency distributions. Stable bimodal
distributions require shifts from mor-
tality-dominated to growth-dominated
conditions via age-related changes in
Z, K, or both. Non-equilibrium con-
ditions or events such as pulses in
recruitment or mortality can also
modify size-frequency distributions,
but these effects are usually transi-
ent. These results indicate that infer-
ences concerning the demographic
dynamics of a population may be
derived simply by observing the shape
of its size-frequency distribution.
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Population ecologists and wildlife
managers are often interested in
identifying spatial and temporal pat-
terns of growth and mortality in
order to understand the dynamies of
populations. Because of logistic or
other constraints in their abilities to
directly quantify mortality and
growth, however, ecologists often
rely on the analysis of size distribu-
tions to infer these parameters
(Cassie 1954; Beverton and Holt
1956; Ricker 1958, 1975; Ebert 1973;
Van Sickle 1977b; Pauly and Morgan
1987). A population’s size-frequency
distribution (hereafter referred to as
size distribution or size structure)
results from its recent history of re-
cruitment and mortality, integrated
with the growth rates of individuals.
Temporal or spatial changes in the
size structure of a population must
therefore reflect changes in one or
more of these parameters. For exam-
ple, red sea urchins Strongylocentro-
tus franciscanus are long-lived and
have size distributions that are rela-
tively stable through time, but vary
in space due to geographic changes
in recruitment and mortality related
to the distribution of predators and
dispersal of larvae (Tegner and Barry
Unpubl.). In some locations urchins
have persistently bimodal size struc-
tures, while in others, the population
is unimodal or amodal.

Techniques for size-frequency
analysis usually combine models of
the growth rates of individuals with

mortality rates to describe observed
size-frequency distributions. Because
growth and mortality both affect the
shape of the distribution, knowledge
of one parameter may allow deduc-
tion of the other from the shape of
the size-frequency distribution. Since
growth, mortality, and recruitment
can vary considerably, as well as in-
dependently of one another, analyses
of size distributions typically utilize
several simplifying assumptions.

In this paper, we show that al-
though simplified models commonly
employed for growth and mortality
result in a limited range of size strue-
tures, they can nonetheless be in-
dicative of the demographic patterns
of populations. Thus, examination of
size-frequency distributions may
allow reasonable inferences concern-
ing the dynamics of a population. In
particular, bimodal size distributions,
that are ‘‘impossible’” under typical
model assumptions but are typical of
red urchins in the Southern Califor-
nia Bight, must arise from particular
patterns of age or size-specific changes
in demographic parameters. In order
to generate these size structures,
assumptions concerning constant
mortality and growth coefficients are
not tenable.

The most basic assumption of most
models is that the population is stable
and has a stationary age structure.
Thus, recruitment is taken to be invar-
iant from year to year, or continuous,
and mortality rates are presumed
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constant over time. In addition to these assumptions,
the population is usually required to conform to strict-
ly deterministic equations that describe growth and
abundance. Often, mortality rate is also assumed to be
independent of age (Green 1970, Ebert 1973), resulting
in a type II survivorship curve (Deevey 1947). Growth
rates of individuals are frequently assumed to fit a
Brody-Bertalanffy function (von Bertalanffy 1957,
Ricker 1975) in which size increases at a rate propor-
tional to the distance from the maximum size. For
models in which one or another of these assumptions
is relaxed, see Van Sickle (1977a,b), DeAngelis and
Mattice (1979), DeAngelis and Coutant (1982), and
several papers in Pauly and Morgan (1987).

The applicability of these simplifying assumptions
varies considerably among species and populations. For
some species (e.g., certain long-lived fishes of arctic
lakes), age structures are stable and size distributions
are stationary, with fairly constant recruitment from
year to year (Johnson 1976). For many species, how-
ever, the assumption of a stable age structure is un-
realistic, due to considerable interannual variability in
recruitment to the zero age class (Johnson et al. 1986,
Pearse and Hines 1987, Raymond and Scheibling 1987,
Barry 1989). For red urchins, although recruitment
varies between years, the shape of its size distribution
is characteristically constant from year to year (Tegner
and Barry Unpubl.). The assumption of an age-invari-
ant mortality rate is also probably unwarranted for
many, if not, most species. A more common pattern
is high juvenile mortality, followed by high adult sur-
vival (type I1I survivorship). Models incorporating these
simplifying, but perhaps unrealistic, assumptions (dis-
cussed above) can, nevertheless, be of value in iden-
tifying patterns of individual growth as well as in
estimating recruitment and mortality for the popula-
tion. In many cases these properties may otherwise be
unobtainable.

In this paper we are concerned with population
dynamics that result in a bimodal distribution of sizes.
Bimodal size distributions have been reported for
several species, and are of considerable interest (John-
son 1976; Tegner and Dayton 1977, 1981; Shelton et al.
1979; Timmons et al. 1980; Stein and Pearcy 1982;
Wilson 1983; Pollard 1985; Page 1986; Tegner and
Barry Unpubl.), especially for populations that are
apparently stable. Intuitively, bimodality may develop
and persist under equilibrium conditions by a combina-
tion of rapid growth of individuals to adult size and high
survival rates. Thus, a mode of juveniles may be distinct
from an adult mode comprised of several age classes
that overlap in size, with relatively few intermediate-
sized, rapidly growing individuals. DeAngelis and Mat-
tice (1979) and Power (1978) suggested that bimodality
may arise from this sort of “pileup” of individuals at

larger size classes due to a decrease in growth rate at
adult size, even with constant mortality. Mortality
decreases the number of older individuals, but a large
number are left clustered near the upper size limit.
Here we show that bimodal size structure must develop
from particular patterns of age-specific growth, mor-
tality, or both, that are not possible with commonly
employed models. Specifically, bimodality can develop
only from an increase in survivorship with age or an
increase in the growth coefficient with age, or both.
Even though simple models are limited in their range
of size distributions, we can use these models to iden-
tify deviations from them that are necessary or suffi-
cient to produce particular size distributions, such as
bimodal or strongly unimodal distributions.

Derivation of a
simple size-frequency model

The change in abundance of a cohort can be repre-
sented as,

dN
i -ZN (1)

where N is the number of individuals alive in the cohort
at time ¢, and Z is the instantaneous mortality rate for
the population. Assuming that Z is constant over time
and independent of age and size, this equation can be
integrated to obtain a simple decreasing exponential
function for the number of individuals versus time,

N, = N, e-2tt-t) (2)

where t, is the time of recruitment or birth and Ny is
the abundance of the population at time ¢;. The equa-
tion can be simplified slightly by defining abundance
in terms of age rather than time; age () equals t-t,,
or time since recruitment. Hence, equation (2) becomes

N, = Ny e-2r, 3)

If we now assume that the population is stable, with
constant recruitment, this function describes both the
time series of abundance for a single cohort and the
stable age structure of the population.

Brody-Bertalanffy growth is characterized by expo-
nentially decaying growth in size, with no lag during
early life. The general form of this deterministic equa-
tion is

S; = S (1—-be-Kit-t)) 4)

where S, is the size of an individual at age 7 (i.e., at
time ¢ after ¢, the time of birth or recruitment), S, is



Barry and Tegner: A predictive model for size-frequency distribution 15

VON BERTALANFFY GROWTH
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Figure 1
Brody-Bertalanffy growth for various values of the Brody growth
coefficient K. Values of K are listed adjacent to each curve.

the maximum size, b is a scaling factor to account for
a size at recruitment larger than 0 (for a recruitment
size of 0, b =1), and K is the Brody growth coefficient
(Ricker 1975) which constrains the shape of the func-
tion. Higher values of K result in a more rapid approach
to asymptotic size (Fig. 1). If b is considered to be unity
and age (1) rather than time is used, the equation
simplifies to

S, = S, (1-bekv), ®)

Assuming these functions adequately describe the
mortality and growth schedules of the population, we
can combine equations (3) and (5) to derive an expres-
sion for the size-frequency distribution of the popula-
tion. By definition, the number of individuals alive in
an age interval T, to 1, in equation (8) is equal to the
number in the corresponding size interval S; to Sy, as
determined by equation (5).

Ng dr = N, dS,
. dr
and rearranging, Ng = N, P (6)

Because we assume these relationships to be strictly
deterministic, we can solve equation (5) for t

T = L l’n(l—i). @)

Next, we form the first derivative of equation (7) with
respect to T, yielding

dr B 1
as. - S\
S, (1_Sm)

8

Combining equations (6), (3), (7), and (8) yields an ex-
pression for number as a function of size,

Ng = N, e%m(l_gsi) R S

Sy
KS, (1’3_)

o]

which simplifies to:
)

E—l
Ng = Mo (1-5—)( . ©)

00 o0

This size distribution function (9) describes popula-
tion abundance as a function of size, rather than age,
for any conditions of constant mortality (Z) and growth
coefficient (K). By evaluating its first derivative at
dN/dS = 0, we can identify conditions necessary for
the existence of a zero slope (modes or troughs) in the
size distribution. This derivative is

Z_,
aN _ Ny 5—1 1 S (K ) 1
ds ~ KS, \K )( ‘Sm) (‘Sm
Z_1\ 2oy 5 (%) 10
- (&) )msls) o)
The conditions where dN/ds = 0 are:
Ny = 0 : trivial
S; =S, : trivial
S, = « : trivial
Z = K :growth is balanced by mortality.

The only non-trivial condition where the size-fre-
quency function has a slope of zero is when Z =K. In
this case all size classes are equally abundant, since the
solution to equation (9) indicates that when Z = K, Ng
is constant and independent of S;. Therefore, there
are no conditions of growth and mortality that are
capable of producing a bimodal distribution when using
these simplifying assumptions. Thus, the hypothesis
that bimodality arises from rapid growth to adult size
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Hypothetical size-frequency distributions for populations exhibiting
constant mortality and von Bertalanify growth. (A) Mortality (Z)
is constant for all sizes. The growth coefficient (&) is also assumed
to he a constant. Due to these assumptions, the shape of size-
frequency distributions are limited to these general forms presented
in b-d, according to the relative magnitudes of Z and K. (B)Z is
less than A over all 8. (C) Z equals K. (D) Z is greater than A.

and high (constant) survivorship (Van Sickle 1977a,
Power 1978, DeAngelis and Mattice 1979), is not ade-
quate, assuming simple Brody-Bertalanffy growth and
constant mortality under steady-state conditions. There
must be a more complicated age dependence of growth
rate, or an age dependence of mortality, to account for
a bimodal stable size distribution.

Because the signs of Ny, S;, S,, and K are all
positive, the sign of dN/dS in equation (10) is deter-
mined by the first term (Z/K-1). If Z is greater than
K, the slope is negative and the size structure is
dominated by juveniles (Fig. 2). When Z is less than
K, the slope is positive, up to S_, and the population
is dominated by adults. These can be termed mortality-
dominated and growth-dominated populations,
respectively.

Effects of age-related rates
of growth and mortality

Let us now relax the assumption that K and Z are in-
dependent of age. Age-specific variation in these coef-
ficients can result in a bimodal or unimodal size
distribution, depending upon the relative magnitude of
K and Z. The derivations of similar models for age-
varying K and Z are more complicated, but we can
evaluate the effect of such changes simply by consider-
ing a combination of size distributions generated with
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If the assumptions of constancy for Z and K are violated, the shape
of a size distribution varies according to the pattern of the violation.
The figures on the left-hand column indicate a shift (step function)
in the relative values of Z and K, with age or size. The figures in
the three right columns show the general shape of the size-frequency
distribution for the specified conditions, created by combining the
predicted size distributions for before and after the change in K or
Z. (Row A) For a decrease in the ratio of Z/A with larger size.
himedality is possible, depending upon the magnitude of Z and K.
When Z is near in value to K, and Z/K shifts from greater than to
less than unity, bimodality is likely. For cases where Z is always
greater than K or less than K, the size-frequency distribution is
dominated by juveniles, or adults, respectively. (Row B) For an
increase in Z/K, the size distribution may be unimodal with a mode
in any position, but cannot be bimodal. For each of the three right
columns, the appropriate value of Z/K for the interval §; to S_
is indicated.

different values for one or both of these coefficients.
The important implications remain unchanged. If K or
Z changes with size such that the ratio of Z/K shifts
from greater than to less than unity as size increases,
the slope of the size distribution will change from
negative to positive: conditions required for a bimodal
distribution (Fig. 3). In contrast, a shift from growth-
dominated (Z/K<1) to mortality-dominated (Z/K>1)
conditions produces a strongly unimodal pattern, with
the position of the mode determined by the size where
Z=K.

Obviously, variation in the ratio of Z/K can arise from
size or age-specific changes in the value of Z, K, or both.
Although Bertalanffy-type growth curves assume K to
be independent of age, the growth intervals of species
are frequently shown to exhibit variations in K with
age, with K commonly decreasing slightly with age
(Ricker 1975). For example, decreases in K with size
or age are evident from the increasing slope of Walford
plots for sea urchins Strongylocentrotus purpuratus
presented by Russell (1987). Estimates of K from Rus-
sell’s Figure 3 decrease from approximately 0.5 to 0.05
from small to large urchins at most locations. Assum-
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ing the reported instantaneous mortality rates (Z=0.1)
to be constant, the age-specific Z/K ratio indicates that
the size-specific population dynamics switch from
growth-dominated (Z/K<1) to mortality-dominated
(Z/K>1), which might account for the observed strong-
ly unimodal size-frequency distributions. Other species
of urchins (Tegner and Dayton 1977, 1981; Himmelman
1986; Tegner and Barry Unpubl.) as well as many
species of long-lived arctic fishes (DeAngelis and Mat-
tice 1979) exhibit bimodal size-frequency distributions
and must, under steady-state conditions, undergo a
shift from mortality-dominated to growth-dominated
population dynamics.

In that the growth rates of individuals usually
decrease with age (Ricker 1975, but see Campbell 1979,
Himmelman 1986), the most likely cause of persistently
bimodal size distributions under steady-state conditions
is an even greater decrease in the mortality rate of
large individuals. A reduction in mortality, assuming
a constant or slightly decreasing growth coefficient,
could allow Z/K to shift from >1 to <1: conditions
necessary for bimodality.

Evidence for lower mortality with larger size or age
is common. Many species exhibit type III survivorship
curves of decreasing mortality with age (Deevey 1947,
Odum 1971, Wilson and Bossert 1971). For example,
because lobsters preferentially consumed small-sized
red urchins Strongylocentrotus franciscanus (Tegner
and Levin 1983) and sheephead Semicossyphus pulcher
repeatedly select smaller S. franciscanus when offered
a choice of sizes (Tegner and Dayton 1981), predation
mortality apparently decreases with size (=age) in
urchins. In addition, geographic differences in the size
structure of red urchins are related to the distribution
of predators, with bimodal size-frequency distributions
found where these predators are most abundant
(Tegner and Barry Unpubl.). Intraspecific competition
for resources and high adult survivorship appear to
limit the growth or survival rates of juveniles or both
for arctic fishes (Johnson 1976), green sea urchins
(Himmelman 1986), as well as forest trees (Harper
1977), often leading to a bimodal distribution of sizes;
however, bimodality in these populations may arise
from stochastic, age-specific changes in growth (DeAn-
gelis and Coutant 1982).

Unstable or non-equilibrium conditions

There are conspicuous alternative causes of bimodal
size-frequency structures for populations with unstable
or non-stationary age compositions. In particular,
species that have seasonal recruitment and live for only
two years (e.g., blue crabs; Hines et al. 1987) have per-
sistent, but recruitment-controlled bimodality. For

longer-lived species, relaxation of the assumptions of
a stable age structure and stationary size distribution
allow for transient, but perhaps persistent, variations
in age and size structures due to temporal variation in
recruitment and mortality. Interannual variation in
recruitment, to a population normally dominated by an
adult mode, can skew the age structure and occasional-
ly produce a mode of juveniles, thereby resulting in
bimodality. This feature will, however, deteriorate as
the juveniles grow and merge into the adult mode.
Similarly, a mortality-dominated population can
become bimodal when a large pulse of juveniles grows
to adult size, before being eventually depleted by mor-
tality. In both cases bimodality is a transient feature
of the size structure. How long it will persist is deter-
mined by the rapidity with which individuals grow to
asymptotic size as well as the range of variation in
recruitment. Recruitment pulses leading to unstable
size and age distributions have been reported for
several species (Hjort 1914, 1926; Ebert 1983; Cowen
1985; Johnson et al. 1986; Paine 1986; Pearse and
Hines 1987; Raymond and Scheibling 1987).

Variation in growth and mortality within an age
cohort, due to stochastic processes and genetic vari-
ability, can disrupt the deterministic character of
growth and survivorship processes leading to a highly
variable age and size structure, even within a single
cohort. Intrz:pecific competition for resources can in-
duce bimsdality within a single cohort if growth to a
particular size confers a great competitive advantage,
leading to even more rapid growth (DeAngelis and Cou-
tant 1982). For example, if recruitment by juveniles
into the adult size classes is regulated by stochastic pro-
cesses that provide limiting resources to a few juveniles
upon the removal of adult individuals, the size struc-
ture of a cohort may become bimodal. This is appar-
ently typical of arctic fishes (Johnson 1376), large-
mouth bass (Shelton et al. 1979; Timmons et al. 1980),
green sea urchins (Himmelman 1986), stalked barnacles
(Page 1986), and many species of forest trees (Harper
1977).

Value of simple size-frequency
distribution models

As shown in this analysis, even very simple models of
size-frequency distributions, with perhaps unrealistic
assumptions, can provide valuable information con-
cerning the growth and mortality schedules of popula-
tions. Although the range of potential size structures
is constrained by model assumptions such that bimodal
size distributions,or unimodal distributions with the
mode centered away from S, or S_, are not possible,
we can still utilize these models to identify likely
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patterns of age-related mortality and growth; “impossi-
ble” size-frequency distributions are indicative of spe-
cific violations of the assumptions. Even though model
assumptions impose severe restrictions upon the shape
of size distributions, the shape of an observed distribu-
tion, coupled with marginal information concerning
recruitment and growth for the species, can be used
to infer age-related changes in growth, mortality, or
both, leading to better directed research efforts on the
population. This is particularly important for species
such as red urchins which show strong geographical
variation in their population dynamics (Tegner and
Barry Unpubl.); fishery managers often must rely on
easily collected size-frequency information to infer
demographic parameters, rather than costly population
studies at several locations.
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