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ABSTRACT

The dynamics of interacting fish populations are modeled using a coupled set of discrete-time difference
equations. The basic equations deseribe predator-prey and competitive relationships analagous to the
first-order expressions used in standard differential equation models. Population births and aging are
represented using a medified Leslie matrix. A spatial representation is also incorporated and consists
of 2 number of separate compartments, each containing interacting population groups which can be inter-
changed between compartments during a given time period. The potential applicability of the discrete-
time formulation is demonstrated via a simulation of the multispecies fish populations within the Califor-
nia Current during the sardine population collapse of 1930-60.

Numerous mathematical models of interacting multi-
species fish populations are found in the literature
(Riffenburgh 1969; Saila and Parrish 1972; May et
al. 1979; Steele 1979). Depending on the nature of
a particular ecosystem and the desired resolution
level for its components and processes, these models
can become extremely complex (Parrish 1975;
Anderson and Ursin 1977; Laevastu and Favorite
1978). The major limitation in practical fisheries ap-
plications is the lack of sufficient field data to ade-
quately estimate many of the model parameters,
particularly the population interaction terms in com-
plex multispecies models (Goodall 1972).

The two objectives in the present multispecies
model development are 1) to establish a general
mathematical form applicable to a variety of prac-
tical fisheries problems and 2) to provide an efficient
computational tool for simulating complex multi-
species systems. The latter feature has implications
for dealing with the problem of model parameter
uncertainty via specialized Monte Carlo and non-
linear programming procedures as discussed by
Atkinson (1985).

The proposed formulation consists of a unique set
of discrete-time difference equations that describe
first-order dynamic processes affecting some ar-
bitrary number of interacting fish populations at one
or more trophic levels. The discrete equations are
particularly well suited for computer implementa-
tion. There are no requirements for sophisticated
integration routines (e.g., Runge-Kutta, Adams-
Moulton), and the equations have inherent numerical
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stability. Difference equations are also compatible
with fisheries data sets (e.g., eggs and larvae sur-
veys) which are usually sampled seasonally.

The essential biological processes represented in
the model are spawning, growth, mortalities, age
class structure, nonuniform spatial distributions,
and migrations. Certain of these features, such as
spawning, sexual maturation, and migrations, are
often most conveniently described in a discrete form
as assumed in the model. Seasonal time steps are
natural increments for consideration as the values
of appropriate model parameters can then be easily
changed to relate seasonal fish behavior.

The mathematical details of the discrete-time
difference model are developed below. The special
problem of estimating model parameters in practical
applications is also briefly discussed. The dynamics
of the California Current fish populations are then
modeled and simulation runs performed correspond-
ing to the period of the sardine collapse in 1980-60.
Comparisons are made between the simulation
results and the actual (estimated) population
responses.

DEVELOPMENT OF THE DISCRETETIME
DIFFERENCE EQUATIONS

The dominant first-order ecological processes af-
fecting fish populations are modeled by discrete-time
difference equations. For convenience in the mathe-
matical development, these processes are assumed
to occur in th&following sequence during a given
time period: 1) individual growth and mortalities;
2) spatial redistributions of the surviving members;
and 3) births and age class changes of the surviving,

535



redistributed populations. Consistent with the first-
order nature of the formulas, certain simplifications
are expected to be incorporated in the ecological
representation including implicit modeling of lower
trophic levels (e.g., phytoplankton and zooplankton)
and functional groupings of less important species
as competitors, predators, and prey.

Growth and Mortalities

First-order differential equations of the following
general form are typically used to describe the
growth and mortalities of a population P; under
competitive and predator-prey influences with itself
and other populations:

% =(r - uP - vP + wP)P; 1)
where »; = survival/growth parameter
P = population vector
= (P1!P2)"'1Pir"')Pn)
u; = competition coefficient vector
= (Uity Uigs- - oy Ugin -+ oy Uiy)
v; = predation coefficient vector
w; = prey coefficient vector.

The coefficient vectors «;, v;, and w; contain ap-
propriate zeros such that only the active interactions
between populations are defined. (Note that vector
multiplication is implied by the forms such as «.P.)
The competition terms correspond to the standard
Gause model, while the predator-prey terms corres-
pond to the simple Lotka-Volterra model (Pielou
1977). The population variables P; can be expressed
in units of either numbers of individuals or total
biomass, with the coefficients defined accordingly.

Assuming a small time step (A?) relative to the
characteristic time of the system (1/7), a discrete-
time approximation is found directly by integrating
Equation (1) to give
P;(At) = enibt . g-wPA . g-uPA . guPA . P.(0) (2)
These exponential terms form the basis of the dif-
ference model. However, some modification and in-
terpretation of terms is required in order to describe
a general form appropriate over a range of popula-
tion levels. o

The most obvious inadequacy of Equation (2) is
the positive exponential prey term, %P4 which
gets increasingly larger as prey increases without
ever reaching a saturation condition. A more ap-
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propriate form is the predator feeding model given
by Ivlev (1961):

F = Fop (1 - e-%) 3)

where F' is the predator feeding ration and ¢ is an
associated prey coefficient, assuming that this form
can also be used to describe the predator’s growth/
survival as a function of prey density.

The proposed difference equation for expressing
population growth and mortalities during a Af time
step is

Pt + 1) = S;e"%f e AP (1 - R, e-"F)Pi(t) (4)

where S; = maximum survival/growth rate per
time period

a;, = discrete form of competition coeffi-
cient vector

B; = discrete form of predation coefficient
vector

R; = starvation mortality factor

y;i = discrete form of prey coefficient

vector,

The terms in this generalized form need further
discussion and interpretation.

The maximum survival/growth rate factor, S, ac-
counts for population births (if single age class),
growth (if biomass units), and certain mortalities
such as fishing, disease, and old age. It also accounts
for predatory deaths caused by populations not ex-
plicitly included in the ecosystem model. It does not
account for predation, competition, and prey avail-
ability effects associated with the modeled popula-
tions, which are explicitly stated by the other terms
of Equation (4). Maximum survival/growth is defined
under ideal conditions when competition and pre-
dation influences are negligible and there is an abun-
dant supply of prey.

The a competition coefficient is the exponential
equivalent to the Gause term in Equation (1) and
represents a basic damping factor inhibiting popula-
tion expansion. Self-competition generally relates
to the essential environmental resources such as
food supply and habitat space. Additional intra-
population effects can come into play at the extreme
ranges of population densities to complicate this in-
terpretation, such as decreased fecundity caused by
crowding (Parrish 1975) and decreased birth rates
at very low densities (May 1973). Competition be-
tween population groups involves considerations of
niche overlap relative to the common resources for
which they compete (May 1973). Active competition
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interference effects may also be involved (Levine
1976; Vance 1978). Since my model deals only with
first-order effects, the components of the coefficient
vector a are defined as constants and assumed to
be related to the dominant competitive mechanisms
acting over the range of population densities ex-
pected in the simulation.

The B predation coefficient in Equation (4) corres-
ponds to the Lotka-Volterra term in the differen-
tial equation and implies unlimited attack capacity
per predator (May 1973). Relative values of these
vector components reflect the comparative attack
rates of the different predators in the model. The
effective B coefficients perhaps should be reduced
when there are relatively few predators compared
with the size of population P; because of saturated
feeding. However, predation is probably a second-
ary factor under these conditions as competitive
limitations will tend to dominate. Based on first-
order arguments, constant § components are as-
sumed to apply over a reasonable range of predator
densities. Leslie and Grower (1960) make a similar
assumption in the prey equation of their two-
component predator-prey model. Their predator
response equation, on the other hand, saturates at
high relative prey levels as in the present model.

The prey form, represented in Equation (4),
reflects Ivlev’s form (Equation (3)) and implies some
upper bound survival/growth rate under abundant
prey conditions. The present form also incorporates
a starvation mortality parameter, R, that describes
a worst case condition without prey. This param-
eter would typically equal one unless the At time step
is short or an alternative food source not explicitly
included in the modeling is available to sustain the
population.

Component magnitudes of the prey coefficient
vector, v, relate differences in the relative efficien-
cy with which alternative prey are captured and
utilized for predator growth and/or survival. At
similar prey densities, a predator may utilize dif-
ferent capture methods and feed at higher or lower
rates depending on the size and behavioral charac-
teristics of a particular prey (Parsons and Takahashi
1973). Note, however, from the form of the expon-
ential prey term in Equation (4), that any one suffi-
ciently abundant prey population can satisfy the
predator feeding requirement.

Finally, in comparing the present development
with traditional fishery models, note that Equation
(4) can be directly related to the single species
recruitment models of Ricker (1958) and Beverton
and Holt (1957) if the time step is defined as the
maturation time between spawning and recruit-

ment. Also, a comparable fishing term can be broken
out of the survival/growth parameter as follows:

S = Sf So (5)

where S, is the fishing survival rate and S, incor-
porates the remaining survival/growth effects. A
corresponding fishing mortality rate, f, can be
defined and related to fishing effort, Ey, as in the
Beverton and Holt (1957) model:

-nS; €& E
f= e’ A e | (6)
At As

where €, is the fishing efficiency and A, is the fish-
ing area. The general compatability with traditional
fishery models is stressed.

Spatial Redistributions

A simplified picture of fish stock migratory pat-
terns during a typical life cycle is illustrated in
Figure 1. Adult fish move from the feeding grounds
to the spawning grounds and return; larval fish drift
from the spawning to the nursery ground; and
recruits join the adult stock on the feeding grounds.
The seasonal timing of these events is quite regular
as are the spatial regions to which the stock return
during the cycle (Cushing 1975).

Large-scale spatial patterns will be represented
in the model by a number of “boxes” or compart-
ments, each with a defined size and each contain-
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FIGURE 1.—Typical fish migratory pattern (from Cushing 1975).
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ing segments of the various ecosystem populations.
Population variables will now be uniquely assigned
for each box and expressed in density units, such
as numbers or kilograms per hectare. Spatial re-
distributions are assumed to occur during a given
time period via migration, net drift, or turbulent
dispersion. The resultant redistribution process is
expressed by defining population transfers between
boxes.

Spatial redistribution is applied to the surviving
populations determined from Equation (4) and is
described by

M
PEt + 12) = 21 g™ Pt + 1,1) )
Mw=

where
Pkt + 1,2) = density of surviving population 1
in compartment k after spatial
redistributions
P?(t + 1,1) = density of surviving population z
in compartment m before spatial

redistributions

M = total number of spatial compart-
ments

gk = population i transport coefficient

for the exchange from compart-
ment m to compartment k.

The g coefficient defines the population fraction in-
volved in the exchange with an adjustment to ac-
count for the difference in area or volume between
compartments. If no transit occurs between com-
partments, the value of the respective coefficient
is zero.

Birth and Aging Processes

The larvae and juvenile age classes of fish popula-
tions have markedly different survival rates and
behavioral characteristics than do adult populations.
These differences have potentially important first-
order ecological consequences and are, therefore,
of concern in the present model development.

A modified version of the Leslie matrix as pre-
sented by Lefkovitch (1965) is adopted here. Popula-
tions are grouped by stages which can be of unequal
duration with no restriction to single year classes.
The birth and aging matrix transform for N such
stages is given by
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[Ph (t+13)]  [ba fh /& - fiv|[Ph ¢+1,2)]
P, (t+1,3) ag by 0 .0 ||Ph(t+1,2) ]
Pi“s (t+1,3) 0 Qi b-l3 .0 P’,‘g (t+ 1,2)

LPlfN(t+1,3)_ 0 0 0 .1 ||Ph(+12)]

@

where
P{-‘j (t + 1,3) = density of population %, age class
7 after accounting for births and
aging in compartment &
P{Fj (t + 1,2) = density of population 4, age class
j before accounting for births and
aging, but after accounting for

spatial redistributions to compart-
ment k
ey = fraction of population %, age class
j advancing to age class 7 + 1
by = fraction of population i, age class
j remaining in age class
Ji = fecundity function for population

1, age class j in compartment k.

The coefficients a and b are functions of the size
of the time step and the division of ages within the
population. Equation (8) also implies a fixed age
distribution within an age class, such as a uniform
distribution.

The fecundity term, f; is a function of the popula-
tion age class, as well as being time and space depen-
dent. Explicit population crowding effects are
neglected here because they would be comingled
with the other density-dependent terms in Equation
4).

Composite Ecosystem Dynamics
Equations

The above equations are combined and expressed
by the general ecosystem dynamics model given
below. The final surviving, redistributed, and aged
population vector at the end of the time period has
been redefined as P(t +1) = P(t +1,3).
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N, M
Pt +1) = 2 2 Fh(t) g7%@) SH() e

x e~BP O [1 = RR(t) e-raP"0)]
x Pg(t) )

where m is summed over all spatial compartments
M; n is summed over all population subgroups N;;
and F%,(t) is defined by

ﬁn(t);j= 1,n Z 2

bnt);52 Lim =3
F'lkjn (t) = (10)
a'in(t);j Z 2; n = .7 -1

0 ; otherwise.

The model parameters in Equations (9) and (10)
consist of maximum survival/growth rates (S), star-
vation mortality rates (R), transport terms (g), fecun-
dity factors (f), age class changes (¢ and b), and
population interaction coefficients («, $, and y). Time
dependency is indicated for all parameters except
the interaction terms. Space dependency is assumed
to apply to all but age class changes and interaction
terms. If the parameters are described by probabi-
listic functions, the model becomes a stochastic
representation.

The above difference model represents a com-
prehensive description of coupled fish population
dynamics and is proposed for general application.
The form of Equation (9) is particularly well suited
for computer implementation; it provides an effi-
cient time-step simulation capability without requir-
ing a numerical integration scheme. The model can
be conveniently programmed on a mini-computer
system and used to simulate complex multispecies
population dynamics.

MODEL PARAMETER ESTIMATION IN
PRACTICAL APPLICATIONS

The predictive power of the difference model in
practical applications is obviously dependent on the
knowledge of the ecosystem processes and the abil-
ity to estimate the associated parameters used in
the modeling. This situation is true for any eco-
system model whether it consists of difference
equations, differential equations, or any other for-
mulation. In fact, I (1980) showed that difference
equations representing multispecies populations can

be used to approximate the complex response modes
of differential equations by relating parameters and
choosing suitably small differencing time steps. I
also showed that the difference model suffers from
a similar sensitivity to the parameter estimates; the
problem becomes more severe with increasing eco-
system complexity.

Certain parameters in either difference or dif-
ferential equation models can be roughly estimated
from field and/or laboratory studies. Examples in-
clude fecundity and growth rates of individual fish
which can be observed directly. Population-level
parameters, such as interaction and transport
terms, are more difficult to estimate given the
dynamic, wide-ranging nature of fish behavior. Even
with extensive field sampling and the use of multi-
variate statistical techniques to sort out stochastic
environmental features (Reid and Mackay 1968;
Mobley 1973; Poole 1976), these parameter esti-
mates will typically have a large degree of
uncertainty.

The potential advantage of difference models in
dealing with parameter uncertainty is related to
their computational efficiency. When parameter
uncertainty is represented in a probabilistic frame-
work, Monte Carlo procedures can be applied to
statistically describe population response character-
istics based on large numbers of simulation runs.
Probabilistic descriptions of parameter uncertain-
ty can express both the inherent stochastic nature
of the ecosystem and the parameter estimation er-
ror. One problem is that the stochastic ecosystem
features, which are of primary interest, will typically
be masked in the statistics by the large parameter
estimation errors if realistic values for the latter are
included.

I (1980, in press) used nonlinear programming
(NLP) techniques to treat parameter uncertainty in
dynamics models for a general class of ecosystem
problem. My approach is summarized below; it has
been used for resolving parameter estimates in the
difference model application discussed in the section
that follows.

An NLP problem can be stated in the following
general form:

minimize f@)
subject to g(x) =0
LTI,

where £ is the variable vector with upper and lower
bounds of x, and «,,, respectively; f(x) is the so-
called objective function; and g(z) is a vector func-
tion of implicit constraints.
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The problem scenario for my NLP formulation is
that of predicting the dynamic response of eco-
system populations to a given perturbation. The
response is characterized over some period of in-
terest by the objective function which, depending
on the particular problem, can be equated to average
population numbers, final population levels, worst-
year fishery catch, or some other dynamic feature.
The ecological parameters in the dynamics model
become the variables with bounds corresponding to
the estimated parameter uncertainty range.

Implicit parameter constraints are added to the
formulation based on available population history
data, ecosystem stability observations, or any known
or postulated relationships between parameters. The
historical population data are substituted directly
into the difference equations, or other assumed
dynamics equations. In effect, such constraints force
the response modes of the dynamics model to include
past population observations, albeit ones that oc-
curred under different (known) conditions than
those of interest in the future. Stability observations
also infer conditions on the dynamics equations and,
hence, model parameters. However, there are prac-
tical issues in formulating such conditions. Lyapunov
stability analysis techniques (Brogan 1974), while
applicable to nonlinear system analysis, are not
readily defined for the complex difference equations.

Efficient NLP computational procedures have
been applied by me (1980) to solve the special eco-
system formulation described above. A search takes
place through bounded parameter space for extreme
(minimum and maximum) objective function values
while maintaining the equality of the implicit con-
straints, i.e., the search proceeds on the “constraint
surface” in parameter space. The key to an effec-
tive problem solution is the computational require-
ments of the dynamics model which is used in both
constraint formulation and for evaluating the objec-
tive function at each search step. While the NLP
approach does not give definitive estimates of in-
dividual model parameters, it strongly delimits their
range of values via the interrelationships established
by the implicit constraints (Atkinson 1980).

ECOSYSTEM SIMULATIONS USING
THE DIFFERENTIAL EQUATION MODEL

The discrete-time multispecies dynamics model
given by Equation (9) has been implemented as a
FORTRAN computer program and used to perform
a variety of simulations of theoretical and applied
fisheries scenarios (Atkinson 1980). A case of some
practical interest, the collapse of the sardine popula-
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tion within the California Current region, will be
described and used to demonstrate the potential
model utility.

General Description of
the Sardine Population Collapse
off California

The waters of the California Current flow south-
ward along the west coast of North America cover-
ing the general region are illustrated in Figure 2.
While the California Current supports a diverse
group of fish, the sardine fishery was by far the most
important in the early years of this century until the
dramatic collapse of the sardine population in
1930-60. A large increase in fishing effort took place
during this time and apparently caused, or at least
was associated with the sardine population collapse.
The estimated history of the sardine population from
1930 to 1960 as derived by Murphy (1966) is shown
in Figure 3.

Two sets of anchovy population estimates for the
1930-60 time frame are also presented in Figure 3.
Although these data are confused by significant gaps
and strong fluctuations from year to year, there does
appear to be a significant population increase from
levels in the 1940’s and early 1950’s to that near
the end of the 1950’s. Since the anchovy is the chief
competitor of the sardine with similar food require-
ments and overlapping habitat boundaries, the
general indication is that the anchovy replaced the
sardine within the trophic structure (Murphy 1966;
Gulland 1971). Murphy’s (1966) 3-yr averaged data
provides the clearest evidence of this increasing
trend. Smith’s (1972) yearly estimates show that the
anchovy population actually declined from 1940-41
to 1950 (the next year in which data was available),
before a sharp rise occurred. The significant varia-
tions evident in both anchovy and sardine data are
probably caused by random environmental in-
fluences on recruitment success (Lasker 1978; Par-
rish et al. 1981; Methot 1983).

Soutar and Isaacs (1974) presented some interest-
ing longer term data on the sardine and anchovy
(plus other pelagic fish) as derived from sedimen-
tary scale depositions in anaerobic basins off South-
ern California and Baja California. The deposition
rate, which is averaged by 5-yr periods, provides a
relative picture of the population variations over the
last 150 yr (up to 1970). The data for the 1930-60
time frame indicate similar trends to that above, i.e.,
decreasing sardine levels and increasing anchovy
levels. However, significant sardine and anchovy
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FI1GURE 2.—Map of the California Current region showing sardine distribution and major fishing localities in the period
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F1GuRrE 3.—Estimated adult populations of sardine and anchovy
during the 1930-60 sardine collapse period. The solid line cor-
responds to yearly sardine estimates by Murphy (1966). The dashed
line with triangles corresponds to 3-yr average anchovy esti-
mates also by Murphy: the initial point is a 2-yr estimate with a
data gap until 1951. The circles correspond to yearly anchovy
estimates by Smith (1972); a data gap exists between 1941 and
1950.

variations are also evident in earlier times before
fishing pressure became a significant factor in the
ecosystem. For example, the sardine history showed
extremely low levels in 1865-80 comparable to the
levels after 1940. The earlier anchovy record, while
also having periods of relatively high and low
sedimentation rate, appears to have been at con-
sistently higher levels before 1930-60, even higher
than the recent increase of the late 1950’s. Soutar
and Isaacs (1974) stated that relatively unproduc-
tive conditions have apparently existed for the past
30 yr or so and have generally affected fish popula-
tions of the California Current.

Model Formulation

The waters of the California Current region, with
their chemical and biological constituents, can be
viewed as an ecological system (Sette 1969). The
present model focuses on the sardine and anchovy
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subsystem defined by Riffenburgh (1969) and shown
in Figure 4. While not a comprehensive description
of this ecosystem, I use this representation to
demonstrate the application of the difference model
in a reasonably complex fishery situation. The sar-
dine ecosystem will be simulated during the period
from 1932 to 1952 spanning the years of the major
sardine collapse.

The sardine population is divided into three age
groups: larval-year stages, yearlings, and adults.
The larval year is the most vulnerable period of the
sardines’ development during which it goes through
many fundamental changes. The yearlings are the
in-between stage to the sexually mature adult
members of the population, which are defined to be
2-yr-olds and above. Early stages of the sardine feed
on phytoplankton while the adults feed primarily on
zooplankton (Huppert et al. 1980). The adults are
also predators of their own larval stages and those
of the anchovy as indicated in Figure 4.

The anchovy population is divided into two groups,
larvae and adult, which have similar intergroup rela-
tionships and feeding habits to the corresponding
sardine groups. Competitor and predator groups to
the sardine and anchovy are defined as lumped
assemblages, both encompassing a broad range of
diverse fish species; the competitor group also con-
tains many invertebrates. The pelagic fish com-
petitors (e.g., jack mackerel) are assumed to behave
similarly to the sardine and anchovy except that
some of the larger members feed on the sardine
yearling stage (Riffenburgh 1969). The predators
(e.g., hake and baracuda) feed on the adults of the
sardine-anchovy-competitor trophic level and also
have other prey that have been decoupled from the
modeled subsystem. Phytoplankton and zooplankton
groups are modeled implicitly as carrying capacity
terms.

Additional model assumptions are that 1) spatial
features are not critical (i.e., one spatial compart-
ment is used), and 2) seasonal effects can be ignored
(i.e., a yearly time step is defined). These two
assumptions are probably not justifiable in the time
period after 1950 or so, because of the shift of
dominance from the northern sardine subpopulation
to the southern one. Important differences in such
factors as natural survival rates, maturation charac-
teristics, and fishing effort exist for these subpopula-
tions (Murphy 1966).

Discrete-Time Difference Equations

The difference model representing the seven inter-
acting populations of the sardine ecosystem is pre-
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F1GURE 4.—Schematic showing interactions between sardine ecosystem groups as modeled by Riffenburg (1969). Competitive
relationships are indicated by the connecting lines with dual arrowheads, while predator-prey relationships are defined by

arrows pointing to the predator.

sented in Table 1. These equations reflect the
general form of Equation (9) for a single spatial com-
partment. Parameters are defined for all processes
other than transport, including competition, pred-
ator-prey, survival/growth, births, and fecundity.
These parameters are assumed to be independent
of the year during the 1932-52 simulation period,
except for 1) the sardine fishing rate, d3(t), and 2)
a sardine larvae survival factor, K, (). The latter
are related to the parameters presented earlier by

3(t) = 1 - Sp(t)
E\(t) = $:(t)/S;

where Sy; is defined in Equation (5) and S; is the
average (reference) sardine larvae survival rate dur-
ing 1932-52. The time-varying fishing rate and lar-
vae survival factor represent the “drivers” perturb-
ing the ecosystem during the sardine collapse period.

Time-varying representations may also be ap-

TaBLE 1—Difference equations describing biomass dynamics of the sardine ecosystem
populations. Note that age sub-groups are indexed as separate populations to simplify
the nomenclature. Also, all populations in exponentials are assumed to be at time t.

Population 1 - sardine larvae

Pi(t + 1) = 13830 [1 — 65(t)] oXp(—aa3Ps — agsPs — a3sPg) exp(—ParPy) Pa(t)

Population 2 - sardine yearling

Py(t + 1) = E|(1)S, exp(—aPy — a14P,) exp(—B43P3 — BysPs — BigPe) Py (1)

Population 3 - sardine adult

Pyt +1) = S, xp(—apP, ~ a25P5) OXp(—PosPe)Py(t)
+ Saolt — d3(t)] exp(—agP; — agsPy — agePe) ©Xp(—ByrPr)Pylt)
Population 4 - anchovy larvae
Py(t + 1) = 1S5 exp(—ag3Py — agsPs — asgPg) €xXp(—PszP7) Ps(t)
Population 5 - anchovy adult
Pg(t +1) = S, exp(—ayPy ~ ayPy) OXp(—Pi3Psy — BisPs — PagPs) Pall)
+ S5 exp(—agaPy — assP5 — aggPeg) exp (- 5P Ps(t)
Population 6 - competitor group
Pg(t + 1) = Sg exp(—agyP3 — agsPs — agePg) exp(—fg;P7) Pglt)
Population 7 - predator group
Pt + 1) = S; exp(—aP7) [1 — Ry exp(—ys3P3 = y25Ps — vzePe)l P7(t)
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propriate for other population parameters such as
anchovy larvae survival but are ignored here. The
modeling emphasizes those features directly impact-
ing the adult sardine population because it is the only
population for which detailed data are available for
making comparisons.

Initial Conditions:
State of the Ecosystem

The sardine ecosystem will assumed to be in an
approximate equilibrium state prior to 1932, ignor-
ing random population fluctuations. The sardine
population appears to be consistently near virgin
levels for the few years that data are available
before 1932 (Fig. 3), and I speculate that the other
populations are at reasonably consistent levels as
well. There is some justification for overall stabil-
ity at the sardine-anchovy-competitor trophic level
and the predator trophic level, if not for individual
fish species or population groups (Sette 1969; Steele
1979).

Estimates of population biomasses prior to the
1932-52 collapse period were summarized by Atkin-
son (1980) from data given by Murphy (1966) and
Riffenburgh (1969). The biomasses presented below
correspond to the assumed equilibrium state at the
start of a fishing year. A fishing year is defined to
begin in the summer after the main spring spawn-
ing season of the sardine and anchovy.

1,600 kilotons

300 kilotons
4,000 kilotons

400 kilotons
1,000 kilotons
3,000 kilotons
2,000 kilotons

¢ sardine larvae P,
¢ sardine yearling P,
¢ sardine adult Py
¢ anchovy larvae P,
* anchovy adult  Pj
¢ competitors Py
¢ predators P,

The initial state in 1932 is also defined by this
biomass vector, P.

Parameter Estimation for the
Sardine Ecosystem Model

First, I point out that the above model represen-
tation is not intended to be a comprehensive descrip-
tion of the sardine ecosystem or to have general ap-
plication for predicting future population dynamics,
at least not as developed here. However, it is pro-
posed as a reasonable representation to demonstrate
the similarity between simulated results and ob-
served system dynamics during the 1932-52 time
frame provided appropriate parameter estimates
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can be determined. The value of the difference for-
mation in dealing with the parameter uncertainty
issue will be illustrated in the discussion below of
parameter estimation procedures.

Two model parameters in the equations of Table
1 were estimated directly from available data in the
literature (Murphy 1967; MacCall 1979; Clark and
Phillips 1932; Huppert et al. 1980): adult sardine sur-
vival, S35, = 1.40 (excludes fishing mortality ef-
fects), and adult anchovy survival, S5 = 1.20. The
driver terms in the model, d;(t) and E\(t), were
also estimated from available data during the
simulation period. These terms could not, of course,
be definitized without the benefit of present hind-
sight. In a predictive situation, such terms would
generally have a large degree of uncertainty,
because projected fishing pressure is highly
speculative while larvae survival has a strong
stochastic component. Here, however, the available
data will be used to the extent possible to resolve
model terms.

Estimates of sardine fishing parameter, d;(t),
were derived from Murphy’s (1966) data and are
shown plotted in Figure 5. The simplified model used
in the simulations ignores detailed yearly variations
and focuses on the major trends. A linear increase
is assumed during the period from a rate of about
0.1 in 1932 to a rate >0.4 in 1936. The fishing rate
is assumed to remain constant for the remainder of
the simulation period.

The assumed model for the sardine larvae survival
term, E,(t), is presented in Figure 6 along with
Sette’s (1969) data from which it was derived. These
data represent numbers of fish at age class two ver-
sus the year spawned. The survival rate model
assumes that these observed fluctuations in the data
primarily reflect random survival effects during the
first year of life. E,(t) was obtained by normaliz-
ing Sette’s data with respect to the spawning
population biomass and defining a relative scale such
that the integrated value over the 20-yr period from
1932 to 1952 was equal to one.

The remaining model parameters, which repre-
sent the great majority of those in the equations of
Table 1, could not be directly estimated to any
degree of accuracy from available literature data.
Instead, these estimates were derived from the
special nonlinear programming analysis of mine
(1980, in press) mentioned previously. I treated
these ecosystem model parameters as variables with
upper and lower bounds reflecting their uncertain-
ty ranges. The bounds established by me for the sar-
dine ecosystem parameters were typically an order
of magnitude. Implicit parameter constraints were
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FIGURE 6.—Model of sardine larvae survival, E(t), used in the sardine ecosystem simulations.

defined by the assumed equilibrium condition prior
to 1932-52. Setting the time-varying fishing rate at
its pre-1932 value (d; = 0.10) and fixing the time-
varying larval survival factor at its reference value
(B, = 1.0), a set of seven equality constraints were
specified corresponding to the seven population
equations in Table 1 with P(t + 1) = P(t) = P.
While there is still significant degrees-of-freedom
in the model (i.e., more parameters than equality
constraints), I was able to greatly resolve their
values based on my nonlinear programming pro-
cedures.

The parameters in Table 2 represent the ‘‘nom-
inal”’ estimates presented by me (1980) based on my

NLP analyses. In searching for minimum and max-
imum population response levels throughout
bounded parameter space, a series of intermediate
search steps were taken that produced suites of
interdependent parameter values satisfying the
pre-1932 equilibrium condition. Population response
levels were equated to the average sardine popula-
tion during the 1932-52 simulation period in this
analysis. The selected nominal parameter suite in
Table 2 gives response levels approximately midway
between the determination of minimum and max-
imum levels.

Note that the parameter values in Table 2 were
not derived from statistical procedures using the
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TaBLE 2.—Estimated values of the sardine ecosystem model parameters (from Atkinson 1980).

Parameter Nominal Parameter Nominal
Population type Symbol value Population type Symbol value
1 Sardine larvae Survival/growth 8, 7.26 5 Anchovy adult Survival/growth Ss 1.30
Competition ay 5x 10°° Competition ags 20 x 1075
Competition a;, 25 x 1078 Competition oz 30 x 1075
Predation By 76 x107* Competition asg 1.0 x 1075
Predation Bis 38 x 1074 Predation Bsz 1.0 x 1074
Predation Big 76 x 1075 Fecundity f 0.432
2 Sardine yearling Survival/growth S, 2.10 6 Competitor group  Survival/growth S 1.65
Competition ap 3.7 x 1075 Competition ags 50 x 1075
Competition a5 1.8 x 1075 Competition ags 50 x 10-%
Predation fg 1.8 x 1075 Competition agg 50 x 10‘:
3 Sardine adult Survivaligrowth ~ S;,  1.40 Predation Ber 50 x 10
Competition azy 1.5 x 10°5 7 Predator group Survival/growth S, 1.23
Competition ags 1.0 x 10°5 Mortality R, 0.5
Competition asg 50 x 1076 Competition ap 52 x 1075
Predation B 1.0 x 1074 Prey Y73 25 x 1074
Fecundity fy 0.468 Prey Y75 25 x 10':
4 Anchovy larvae  Survivaligrowth S, 0.50 Prey 176 125 x 10
Competition ag, 25 x 10-8
Competition g 50 x 10~¢
Predation Bas 1.5 x 1074
Predation Bas 3.0 x 10~*
Predation Bis 3.0 x 1075

population data during the simulation period (Fig.
3). The estimates are uncoupled from these data and,
hence, reflect strictly a priori knowledge as would
exist in applications where predictions are required.
Furthermore, the parameter values are not pro-
posed as best estimates of these parameters, but
simply provide a consistent set of values for use in
the simulation demonstration. The nonlinear pro-
gramming approach of mine is structured in general
to bound future ecosystem response characteristics
given only a priori population data.

Ecosystem Simulations

The simulated sardine ecosystem histories are
presented and compared with estimated sardine and
anchovy population data in Figure 7. The adult sar-
dine population simulation is in reasonably good
agreement with the data of Murphy (1966) giving
the many approximations and simplifying assump-
tions used in the modeling. The major dynamic
features of the adult sardines decline are consistent,
including the sharp rebounds associated with the
favorable conditions for sardine larvae survival in
1938 and 1939 and again in 1947 (Fig. 6).

The simulated anchovy response in Figure 7,
which ignores any fluctuating larvae survival com-
ponent, appears to track the 3-yr averaged estimates
of Murphy (1966). The anchovy population increases
along with the competitor group to fill the ecological
void in this trophic level. The predator biomass
decreased slightly because the decline of the sardine
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results in a less desirable food supply, at least ac-
cording to estimated input parameters. Unfortun-
ately, there are no available data for comparing with
the predicted competitor and predator group
responses.

Another simulation run was made to investigate
the speculation that fluctuating larval survival rates,
by themselves, might have caused the sardine col-
lapse. The sardine fishing rate was held at the
relatively low levels that existed before 1932 (d; =
0.10), and the fluctuating larvae survival model in
Figure 6 was applied. The resulting simulation run
is presented in Figure 8 and shows the predicted
history of the adult sardine population, along with
that of the anchovy, competitor, and predator
groups. The adult sardine population again fluc-
tuates markedly but now remains at relatively high
levels, in no apparent danger of collapsing. It would
appear from these runs that the added fishing
pressure is necessary to explain the actual event dur-
ing this period.

CONCLUSIONS

A general set of discrete-time difference equations
have been developed for use in simulating the im-
portant dynamic processes effecting fish popula-
tions, including

¢ interactions between competors, predators, and

prey
¢ birth, growth, and aging processes within a
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FIGURE 7.—Simulation run for assumed models of increased sar-
dine fishing rate and fluctuating sardine larvae survival rate.

single population group
e spatial and temporal variations.

The sardine subsystem within the California Cur-
rent region was modeled using the multispecies dif-
ference model and simulations computed for the
sardine’s collapse period of 1932-52. Input drivers
perturbing the system included representations of
the increased sardine fishing pressure and the fluc-
tuating sardine larvae survival rates during this
period. Simulation results were shown to compare
favorably with the available population history data.
The increased fishing pressure was indicated to be
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F16URE 8.—Simulation run for assumed constant pre-1932 fishing
rate but with fluctuating sardine larvae survival rate.

the fundamental cause for the sardine collapse; the
estimated yearly fluctuations in sardine larvae sur-
vival could not by themselves have caused this sud-
den event.

These simulation results demonstrate the use of
the discrete-time difference model as an efficient
simulation tool. There appear to be many applica-
tions for the model in theoretical and applied multi-
species fisheries studies.
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