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The western stock of Steller sea lions 
(Eumetopias jubatus) in the Gulf of 
Alaska and the Bering Sea has experi-
enced dramatic and continued declines 
since the mid-1970s (Loughlin et al., 
1992; Loughlin and York, 2000). It is 
likely that changes in prey availabil-
ity linked to commercial fisheries and 
large-scale oceanographic changes are 
among the reasons for the continued 
decline (Loughlin and Merrick, 1989; 
NRC, 1996). The diet of the western 
stock of Steller sea lions has been 
recently assessed (Sinclair and Zep-
pelin, 2002), but discrete selection of 
prey by size has not been described. 
The size of prey is relevant for under-
standing the foraging behavior of the 
predator as well as the ecological role 
of the prey (e.g., mortality at a given 
life history stage). In the case of the 
Steller sea lion, prey-size selectivity is 
particularly important for understand-
ing spatial and temporal changes in 
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diet and is needed for making fishery 
management decisions. 

Size of fish prey consumed by ma-
rine mammals has been estimated 
by using sagittal otoliths recovered 
from stomach and more recently scat 
samples (Pitcher, 1981; Frost and 
Lowry, 1986; Browne et al., 2002). 
Significant relationships have been 
demonstrated between fish fork length 
(FL) and otolith length (Templeman 
and Squires, 1956; Frost and Low-
ry, 1981; Harvey et al., 2000). The 
use of otoliths to describe the size of 
prey taken by Steller sea lions has 
proved useful in data collected from 
stomach samples (e.g., Pitcher, 1981; 
Calkins and Goodwin1). However, few 

Abstract—Prey-size selectivity by 
Steller sea lions (Eumetopias juba-
tus) is relevant for understanding 
the foraging behavior of this declin-
ing predator, but studies have been 
problematic because of the absence 
and erosion of otoliths usually used 
to estimate fish length. Therefore, 
we developed regression formulae to 
estimate fish length from seven diag-
nostic cranial structures of walleye 
pollock (Theragra chalcogramma) 
and Atka mackerel (Pleurogrammus 
monopterygius). For both species, 
all structure measurements were 
related with fork length of prey (r2 
range: 0.78−0.99). Fork length (FL) 
of walleye pollock and Atka mackerel 
consumed by Steller sea lions was 
estimated by applying these regres-
sion models to cranial structures 
recovered from scats (feces) collected 
between 1998 and 2000 across the 
range of the Alaskan western stock 
of Steller sea lions. Experimentally 
derived digestion correction factors 
were applied to take into account loss 
of size due to digestion. Fork lengths 
of walleye pollock consumed by Steller 
sea lions ranged from 3.7 to 70.8 cm 
(mean=39.3 cm, SD=14.3 cm, n=666) 
and Atka mackerel ranged from 15.3 
to 49.6 cm (mean= 32.3 cm, SD = 
5.9 cm, n=1685). Although sample 
sizes were limited, a greater propor-
tion of juvenile (≤20 cm) walleye pol-
lock were found in samples collected 
during the summer (June−September) 
on haul-out sites (64% juveniles, n=11 
scats) than on summer rookeries (9% 
juveniles, n=132 scats) or winter 
(February−March) haul-out sites 
(3% juveniles, n=69 scats). Annual 
changes in the size of Atka mackerel 
consumed by Steller sea lions cor-
responded to changes in the length 
distribution of Atka mackerel result-
ing from exceptionally strong year 
classes. Considerable overlap (>51%) 
in the size of walleye pollock and Atka 
mackerel taken by Steller sea lions 
and the sizes of these species caught 
by the commercial trawl fishery were 
demonstrated.

1 Calkins, D. G., and E. Goodwin. 1988. 
Unpubl. report. Investigation of the 
declining sea lion population in the Gulf 
of Alaska, 76 p. Alaska Department of 
Fish and Game, 333 Raspberry Road, 
Anchorage, Alaska, 99518-1599.
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Figure 1
Illustrations of the various planes for bone and otolith 
measurements used to solve the bone-length to fish-length 
regression equations for (A) walleye pollock and (B) Atka 
mackerel. The structures from the right side of the body 
are shown for all structures except for quadrates. 
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otoliths are recovered from Steller sea lion scat, and 
measurements of otoliths recovered from scats likely 
underestimate prey size because of partial erosion 
from digestion (Prime and Hammond, 1987; Del-
linger and Trillmich, 1988; Harvey, 1989). Because 
of the impracticality of collecting stomachs and the 
low number and poor quality of otoliths found in 
scats, alternative methods are needed to accurately 
describe the size of prey consumed by Steller sea 
lions.

Archaeological studies routinely use skeletal struc-
tures other than otoliths to estimate either fish 
length or mass (Keys, 1928; Casteel, 1976; Owen 
and Merrick, 1994; Desse and Desse-Berset, 1996). 
Wise (1980) used a regression of fish length on ver-
tebrae length to estimate prey size from scat samples 
of otters (Lutra lutra) and mink (Mustela vison). 
The regression approach relies on the assumption 
that the overall size of a given fish and the size of 
skeletal structures are highly correlated. This as-
sumption has been substantiated for cranial and 
skeletal structures other than otoliths in various 
North Pacific fish species (Orchard, 2001). Thus, the 
use of cranial structures appear to be a viable alter-
native to the use of otoliths for studying prey size of 
Steller sea lions. 

Walleye pollock (Theragra chalcogramma) and At-
ka mackerel (Pleurogrammus monopterygius) rank 
among the top prey items of Steller sea lions (Sin-
clair and Zeppelin, 2002) as well as being valuable 
in the U.S. commercial fishery (NMFS, 2003). We 
estimated fork length for these two primary prey 
species from scats collected between 1998 and 2000 
across the range of the Alaskan western stock of sea 
lions. Fish length was estimated by using regres-
sion formulae relating bone or otolith measurement 
to fork length for seven cranial structures found in 
sufficient quantities and in good and fair condition in 
scat samples. Experimentally derived digestion cor-
rection factors (Tollit et al., 2004b, this issue) were 
applied to bone and otolith measurements to account 
for loss of size due to erosion. The methods developed 
here proved to be an effective tool to estimate size of 
prey selected by Steller sea lions and are applicable 
for other marine mammal diet studies particularly 
where otoliths are highly eroded. 

Materials and methods

Development of regression formulae

Fork-length to bone and otolith-length regression 
equations were developed for seven cranial struc-
tures from walleye pollock and Atka mackerel. Bones 
and otoliths were selected according to species-specific 
features, predictability in condition, and prevalence 
in scats. Bones included the angular (ANG), quadrate 
(QUAD), interhyal (INTE), dentary (DENT), pharyn-
gobranchial 2 (PHAR), and hypobranchial 3 (HYPO) 

(Fig. 1). Fork length regressions were developed for sagit-
tal otolith length (OTOL), as well as for width (OTOW) 
measurements. All selected cranial structures were 
paired (having a left and right side) which allowed for 
enumeration of prey species. Only right-sided bones and 
otoliths were used to develop the regression equations. 
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In symmetrical fishes such as walleye pollock and Atka 
mackerel the left and right otoliths are mirror images 
of each other (Härkönen, 1986). We compared the left 
and right-sided measurements for all seven structures 
using a subsample of the structures used to develop the 
regression equations. There was no significant difference 
for either walleye pollock (paired t-test, P<0.05, n=13 for 
HYPO, 15 for QUAD, and 14 for all other structures) or 
Atka mackerel (paired t-test, P<0.05, n=14 for OTOS 
and 17 for all other structures). 

Fish specimens used for regressions were collected 
from the Gulf of Alaska and Bering Sea. Standard 
length (SL) was converted to fork length for walleye 
pollock (when fork length was not available for a small 
number of otoliths included in the regressions) by using 
the following equation: FL = 0.40+1.07(SL) (Wilson2). 
We chose to use FL over SL for the regressions because 
all fish were in good condition, thus allowing for ac-
curate measurements. Additionally, FL is the standard 
used for commercial fishery and survey data by the 
National Marine Fisheries Service for direct compari-
sons. A partial analysis of these data was previously 
reported in Orchard (2001). We expanded the data set 
reported in Orchard (2001) to reflect the size range of 
bones found in Steller sea lion scats and included only 
fish specimens collected within our study area.

Linear regression models were fitted for most cranial 
structures by using the following equation: 

Y = α + βX,

where Y = the fork length of the fish;
 X = the measurement of the cranial structure; 

and 
 α and β are constants that define the regression  

formula. 

However, some cranial structures provided a better fit 
with the following quadratic regression equation: 

Y = α + βX + βX2.

The strength of the relationship of the regression models 
was assessed by using a coefficient of determination 
(r2).

Erosion is a potential source of bias when estimating 
prey body size from digested otoliths (Prime and Ham-
mond, 1987; Dellinger and Trillmich, 1988; Harvey, 
1989). We used condition-specific digestion correction 
factors (DCFs) developed by Tollit et al. (2004b, this 
issue) to correct for the high degree of variation in the 
erosion of cranial structures. DCFs were obtained from 
feeding experiments on captive juvenile Steller sea lions 
by using a subsample of fish collected for the regres-
sion analysis (Tollit et al., 2004b, this issue). Selected 
cranial structures from three size groups of pollock 

2 Wilson, M. 2003. Personal commun. Alaska Fisheries Sci-
ence Center, Natl. Mar. Fish. Serv., NOAA, Seattle, WA.

(28.5–45.0 cm FL) and one size group of Atka mackerel 
(30–36 cm FL) were used to develop the DCFs.

Estimation of size of walleye pollock and Atka mackerel 
consumed by Steller sea lions in the Bering Sea and  
Gulf of Alaska

Steller sea lion scats were collected from 1998 to 2000 
along most of the U.S. range of the Alaskan western stock. 
Scats were collected from rookery (breeding) and haul-
out (nonbreeding) sites in summer (June−September) 
and haul-out sites in winter (February−March). We 
assumed that scats collected on summer rookery sites 
primarily represent the diet of adult females because 
adult males present on rookeries usually fast during 
this time. Juveniles of both sexes come ashore on rook-
eries during summer and undoubtedly are represented 
in the data, but to a lesser degree than adult females. 
Scats from juvenile Steller sea lions are more likely to 
be sampled on haul-out sites during summer, where 
juveniles make up the greatest proportion of individuals. 
Scats collected on summer haul-out sites or any winter 
site presumably represent a greater cross-section of 
ages and sexes than collections from rookeries during 
summer. 

Scats were rinsed through nested sieves of 4.8-, 1.4-, 
0.7-, and 0.5-mm mesh. Bones and otoliths were iden-
tified to the lowest possible taxon by using reference 
collection specimens. All recovered otoliths and selected 
bones identified as either walleye pollock or Atka mack-
erel were given a condition grade based on the degree of 
erosion (Tollit et al., 2004b, this issue). In general, cra-
nial structures considered in “good” condition had little 
or no erosion, “fair” were moderately eroded (generally 
up to about 20%), and “poor” were heavily digested 
(Tollit et al., 2004b, this issue). All structures that were 
given a condition grade of “good” or “fair” were identi-
fied as being from the left or right side and measured 
to the nearest 0.01 mm with digital calipers. Cranial 
structures graded as “poor” were not measured and ex-
cluded from further analyses because of high observed 
intraspecific variation (Tollit et al., 1997; Tollit et al., 
2004b, this issue). 

Fork-length estimates with and without DCFs applied 
were calculated for each cranial structure and for all 
structures combined. Otoliths were treated separate-
ly because most diet studies currently rely on otolith 
length to estimate fish fork length. Ninety-five percent 
confidence intervals around all mean size estimates 
were calculated by using parametric bootstrapping pro-
cedures (Manly, 1997) in which error associated with 
the regression equation and resampling error resulting 
from variability within correction factors, and variabil-
ity in scats were taken into account. Full details of the 
bootstrapping procedure are presented in Tollit et al. 
(2004b, this issue).

The same fish may be represented by multiple cranial 
structures within a scat; therefore, in order to avoid 
pseudoreplication, we selected a minimum number of 
individuals (MNI; Ringrose, 1993) for each scat sample. 
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Minimum number of individuals for each species in 
each scat was estimated by counting species-specific 
sided elements and choosing the greatest number of left 
or right elements. If more than one structure had the 
same number, the structure with the highest r2 value 
in its regression on fork length (Table 1) was selected 
as a representative length estimate for that fish. If an 
equal number of left and right bones were present, right 
bones were selected. 

Temporal variation in size of walleye pollock and  
Atka mackerel consumed by Steller sea lions 

Temporal differences were assessed by grouping fish 
into stage-class categories. Stage-class categories were 
defined for pollock as follows: juvenile or 1-year-old 
fish (≤20 cm FL), adolescent (20.1−34 cm FL), subadult 
(34.1−45 cm FL), and adult (>45.1 cm FL; Dorn et al., 
2001; Smith, 1981; Walline, 1983). Walleye pollock sub-
adults are likely 3−4 years old, of which ~50% have 
matured and recruited into the fishery, whereas adults 
are sexually mature fish, likely 5 years or older. Stage-
class categories for Atka mackeral were defined as fol-
lows: juvenile up to 2-year-old fish (≤30 cm), adolescent 
or 3-year-old fish (30.1−35.2 cm), subadult or 4-year-old 
fish (35.3−45 cm), and adults (>45.1 cm; Lowe et al., 
2001; McDermott and Lowe, 1997). Atka mackerel ado-
lescents are ~50% sexually mature and adult-size fish 
are fully mature. 

A chi-squared contingency test was used to test for 
differences in the proportion of fish stage-classes occur-

Table 1
Relationship between bone measurement and fish fork length (FL) in millimeters. For each equation the number of bones mea-
sured (n), coefficient of determination (r2), standard error of the regression coefficient (SE and SEx

2 for quadratic regression coef-
ficients), range of fish lengths and mean of fork lengths are given. All measurements are given in millimeters.

Species Structure code Regression r2 n SE, SEx
2 Range of FL Mean FL 

Walleye pollock INTE FL = 49.78x + 5.12 0.98 49 1.12 83−477 201.61

 HYPO FL = 43.14x + 14.12 0.99 49 0.78 83−477 231.58

 PHAR FL = 80.19x + 19.43 0.95 51 2.58 83−477 204.37

 ANGU FL = 59.25x +15.27 0.96 44 1.82 83−477 208.75

 QUAD FL = 89.47x + 6.77 0.99 59 1.32 83−477 203.92

 DENT FL = 108.46x – 1.52 0.99 60 1.75 83−477 206.61

 OTOL FL = 0.50x2 + 15.74x + 13.3 0.99 504 0.68, 0.34 49−530 187.35

 OTOW FL = 2.32x2 + 44.74x + 3.73 0.99 508 1.54, 0.19 49−530 188.66

Atka mackerel INTE FL = 57.38x + 95.57 0.86 106 2.26 185−500 355.37

 HYPO FL = 38.58x 80.64 0.95 105 0.85 185−500 355.62

 PHAR FL = 81.32x + 70.40 0.91 107 2.48 185−500 354.90

 ANGU FL = 58.38x + 73.86 0.91 105 1.85 185−500 355.34

 QUAD FL = -8.90x2 + 129.38x + 9.16 0.96 108 7.07, 0.96 185−500 354.69

 DENT FL = –7.10x2 + 115.83x –21.68 0.94 108 7.08, 0.73 185−500 354.69

 OTOL FL = 62.54x +24.24 0.83 165 2.19 185−500 349.82

 OTOW FL = 188.19x – 77.71 0.78 170 7.71 185−500 350.09

ring in scats among rookeries and haul-out sites, years, 
and seasons by using corrected fork-length estimates 
from all cranial structures (S-PLUS 2000, Mathsoft, 
Inc., Cambridge, MA). To avoid pseudoreplication, we 
used presence or absence of cranial elements of a stage 
class in a scat particilarily because multiple elements 
from the same stage-class within a sample may not be 
independent (Hunt et al., 1996). By using presence-
absence data we also avoided the problems associated 
with the variability in passage and recovery rates of 
different size structures (Tollit et al., 1997). Because 
sample sizes were small, juvenile and adolescent wall-
eye pollock stage classes and recruiting adult and adult 
Atka mackerel stage classes were combined for seasonal 
comparisons among years. Fisher’s exact test was used 
for comparisons when samples sizes for any stage class 
were less than 5 (S-PLUS 2000, Mathsoft, Inc., Cam-
bridge, MA).

We obtained size composition data from commercial 
bottom trawls of walleye pollock and Atka mackerel 
from the NMFS North Pacific Groundfish Observer Pro-
gram. Data were divided into winter (January−April) 
and fall (August−November) seasons and compared 
with our seasonal scat data (February−March and 
June−September). The percentage of overlap in sizes 
of fish caught by the commercial groundfish fishery 
with sizes of fish consumed by Steller sea lions was 
calculated by comparing size-frequency distributions. 
Two-cm size bins were used for the overlap calculation 
and Steller sea lion prey-size data were rounded to the 
nearest integer to be consistent with the fishery data.
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Results

Regression formulae

A total of 517 pollock and 191 Atka mackerel samples 
were used to develop the regression equations of bone 
and otolith measurement to fork length. The sample size 
and range of fish lengths used for the regressions varied 
between species and cranial structures (Table 1). No 
clear indications of sample size required for regression 
analysis are currently provided in the literature; how-
ever, Owen and Merrick (1994) recommend a minimum 
sample size of 30−40. Sample sizes used to develop equa-
tions presented here ranged from 44 to 508. 

In general, linear models were used for regression 
equations; however, several cranial structures were 
best fitted with a quadratic model. For both species, 
all structures were strongly related to fork length (r2 
range: 0.78−0.99; Table 1). The regressions encompassed 
the majority of sizes of bones and otoliths found in Stell-
er sea lion scat samples for this study. However, a small 
proportion of walleye pollock bones from scats were 
larger than those used to develop the regressions. 

Frost and Lowry (1981) developed otolith linear re-
gression equations for walleye pollock from the Bering 
Sea using a double-regression approach that produced 
an inflection point at 10 mm. We examined the double 
regression approach but found a higher degree of corre-
lation using a quadratic regression model. We compared 
the results of our model with Frost and Lowry’s (1981) 
model and found that estimated fork lengths of walleye 
pollock differed less than 2 cm across the length range 
in our samples. 

Estimation of size of walleye pollock and Atka mackerel 
consumed by Steller sea lions in the Bering Sea  
and Gulf of Alaska

A total of 714 scats from 39 sites contained 3646 selected 
cranial elements from either walleye pollock or Atka 
mackerel. Of those, 212 scats contained 666 walleye 
pollock cranial elements with a condition grade of either 
“good” (n=236) or “fair” (n=430). The minimum number 
of individual pollock per scat ranged from 1 to 18 with 
a mean of 1.6 (SD=1.7). For Atka mackerel, 379 scats 
contained 1685 skeletal elements with condition grade 
of either “good” (n=755) or “fair” (n=930). The minimum 
number of individual Atka mackerel per scat ranged 
from 1 to 14 with a mean of 1.9 (SD=1.6). 

The mean fork length of walleye pollock consumed by 
Steller sea lions in the Bering Sea and Gulf of Alaska es-
timated from uncorrected otoliths found in scats was 23.7 
cm (SD=12.0; n=88). Application of the DCF increased 
the mean estimate to 28.4 cm (SD=14.75; n=88). The size 
distribution estimated from corrected otoliths had three 
modes: a major mode around 32 cm and minor modes 
around 5 cm and 13 cm (Fig. 2A). Confidence intervals for 
all grade-corrected estimates can be found in Table 1. 

The mean fork length of walleye pollock estimated 
from all seven structures was 39.8% greater than the 

mean estimated from otoliths alone. The uncorrected 
mean was 33.1 cm. Applying the DCF increased the 
mean length of walleye pollock by 18.7% to 39.3 cm 
(paired t test, t665=37.9, P<0.001). Mean grade-corrected 
size estimates for cranial structures other than otoliths 
ranged from 34.5 cm (PHAR) to 47.2 cm (HYPO) and 
95% confidence intervals ranged from 25.2 to 50.6 cm 
(Table 2). The condition-specific DCFs increased length 
estimates between 6.8% (HYPO) and 28.3% (DENT). 
The size distribution estimated from all grade-corrected 
structures had three modes: a major mode around 44 cm 
and minor modes around 5 cm and 15 cm (Fig. 2A).

The mean fork length of Atka mackerel consumed by 
Steller sea lions in the Bering Sea and Gulf of Alas-
ka estimated from uncorrected otoliths was 30.3 cm 
(SD=4.0; n=117). Application of the DCF increased the 
mean estimate to 34.7 (SD=4.8; n=117). 

The mean fork length of Atka mackerel estimated 
from all structures (30.7 cm; SD=5.9 cm, corrected 
32.3 cm; SD=5.9 cm, n=1685, paired t test, t1684=39.1, 
P<0.001) was similar to the mean estimated from oto-
liths (6.9% less without a DCF and 1.3% less with a 
DCF; Fig. 2B). Mean grade-corrected size estimates 
for structures other than otoliths ranged from 26.6 cm 
(QUAD) to 34.2 cm (INTE) and 95% confidence inter-
vals ranged from 24.0 cm (DENT) to 35.0 cm (INTE; 
Table 2). Use of the condition-specific DCFs increased 
length estimates between 2.1% (INTE) and 24.0% 
(DENT). Fork length estimates for all structures did 
not include PHAR because too few were recovered in 
scats in the feeding studies of captive Steller sea lions 
to develop a correction factor.

When mean prey size was calculated by using MNI, 
the mean corrected and uncorrected size estimate of 
both walleye pollock and Atka mackerel differed by less 
than 0.2 cm from estimates derived by using all struc-
tures. There was little difference in the standard devia-
tions or distributions when MNI estimates were used 
compared with all structures (Table 2). Unsurprisingly, 
the use of MNI estimates did substantially reduce the 
sample size (336/666 for walleye pollock and 722/1685 
for Atka mackerel). 

Spatial and temporal variation in size of pollock and  
Atka mackerel consumed by Steller sea lions

No statistical difference was found in the proportion of 
pollock stage classes among years on summer rookery 
sites (P=0.29, χ2=4.9, df=3) or winter haul-out sites 
(P=0.10; Fisher’s exact test). Scats were collected only 
on summer haul-out sites during 2000. Although sample 
sizes were limited, we found significant differences in 
the proportion of pollock stage classes between summer 
rookery and haul-out scats (P=0.02; Fisher’s exact test) 
and between summer and winter haul-out sites (P=0.018; 
Fisher’s exact test) for year 2000. A greater proportion 
of juvenile pollock were found on summer haul-outs 
(64% juveniles, n=11 scats) than on summer rookeries 
(9% juveniles, n=132 scats) or winter haul-out sites (3% 
juveniles, n=69 scats, Fig. 3). No statistical difference 
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Figure 2
Relative frequency histograms of the estimated fork length of (A) walleye pol-
lock and (B) Atka mackerel consumed by Steller sea lions. Fork lengths were 
predicted from cranial structures in good and fair condition. Comparisons 
were made on the application of correction factors (DCFs) which account for 
digestion and for using minimum number (MNI) estimates as a selection tech-
nique versus using all structures. Otoliths (black bars) are stacked beneath 
all other structures (gray bars).
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was found in the proportion of stage classes between 
summer rookery (9.09% juvenile; 20.45% adolescent; 
53.03% subadult; 65.15% adult) and winter haul-out 

(2.90% juvenile; 21.74% adolescent; 57.97% subadult; 
46.38% adult) sites for all years combined (P=0.32, 
χ2=2.3, df=2). 
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Table 2
Estimated mean fork length of walleye pollock and Atka mackerel consumed by Steller sea lions based on selected structures 
with or without application of condition-specific digestion correction factors (DCFs). Data sets exclude all structures graded as 
heavily digested. Remaining total sample sizes of elements (ne) are given along with proportion of grade “good” structures (ng). 
For data sets where DCFs were applied, 95% confidence intervals (95% CI) were estimated by using bootstrap resampling pro-
cedures (Tollit et al., 2004b, this issue).

Species Structure code DCF ne ng Mean FL (cm) SD (cm) Range (cm) 95% CI

Walleye pollock INTE No 60 0.45 43.7 8.0 16.7−59.4
  Yes 60 0.45 47.0 8.5 16.7−65.9 44.9−49.8

 HYPO No 38 0.55 44.2 7.2 30.5−60.4
  Yes 38 0.55 47.2 7.8 34.9−62.7 44.5−50.6

 PHAR No 23 0.61 32.2 14.3 9.7–53.1
  Yes 23 0.61 34.5 14.8 10.9–53.1 25.2−44.5

 ANGU No 136 0.40 36.1 8.4 10.6–55.3
  Yes 136 0.40 40.2 9.0 10.6–60.6 38.5−42.4

 QUAD No 134 0.34 35.1 12.0 9.4–57.8
  Yes 134 0.34 44.5 15.3 11.9–70.8 38.8−49.6

 DENT No 187 0.37 28.6 11.8 3.1–57.2
  Yes 187 0.37 36.7 15.1 3.7–70.2 30.3−42.4

 OTOL No 88 0.03 23.7 12.0 4.6–46.8
  Yes 88 0.03 28.4 14.8 4.6–57.1 17.0–32.4

 All No 666 0.35 33.1 12.4 3.1–60.4
  Yes 666 0.35 39.3 14.3 3.7–70.8 35.9–42.4

Atka mackerel INTE No 601 0.58 33.5 5.0 19.5–46.8
  Yes 601 0.58 34.2 5.1 19.5–49.6 33.4–35.0

 HYPO No 238 0.42 31.1 4.8 18.8–46.2
  Yes 238 0.42 32.9 5.5 19.3–48.3 32.4–34.6

 ANGU No 488 0.45 30.2 4.7 17.3–43.0
  Yes 488 0.45 31.8 5.1 17.3–46.1 31.7–33.3

 QUAD No 161 0.37 25.3 5.4 14.8–40.6
  Yes 161 0.37 26.6 5.6 15.3–41.4 25.1–28.4

 DENT No 80 0.28 22.5 7.7 13.0–38.7
  Yes 80 0.28 27.9 8.0 17.7–44.1 24.0–33.0

 OTOL No 117 0.06 30.3 4.0 21.2–40.6
  Yes 117 0.06 34.7 4.8 21.2–47.0 33.5–35.8

 All No 1685 0.45 30.7 5.9 13.0–46.9
  Yes 1685 0.45 32.3 5.9 15.3–49.6 31.7–33.4

Significant differences were found in the proportion 
of Atka mackerel stage classes between 1998 and 1999 
on summer rookery sites (P=0.05, χ2 =6.0, df=2 ) and 
winter haul-out sites (P=0.01, χ2=9.9, df=2) and be-
tween 1998 and 2000 winter haul-out sites (P=<0.01, 
Fisher’s exact test). Significant seasonal differences 
were found only in 1998 (P=0.03, χ2=7.1, df=2) which 
may be the result of the small sample size in winter 
2000. In summer and winter, annual differences in 
size of Atka mackerel consumed by Steller sea lions 
corresponded to changes in the length distribution of 
Atka mackerel resulting from exceptionally strong year 
classes in 1995 and 1998 (Lowe et al., 2001). The 1995 
year class is represented as a mode around 30 cm in 
1998 (3-year-old fish), 35 cm in 1999 and >40 cm in 

2000 (Fig. 4). The 1998 year class is represented most 
clearly as 2 year olds (mode 20−25 cm) in summer 2000 
(Fig. 4). Strong annual modes found in our data match 
those recorded in surveys of Atka mackerel in the Ber-
ing Sea and Gulf of Alaska (Lowe et al., 2001). 

For walleye pollock and Atka mackerel there was no 
difference in the mean size of fish caught by the com-
mercial fishery among years (P>0.4, one-way ANOVA). 
There was a significant difference (P<0.05, one-way 
ANOVA) in the size of fish caught between seasons. 
This difference is likely due to aggregations of spawning 
adult fish caught during the roe fishery. In the winter 
there is a 56% overlap between the size of fish caught in 
the commercial pollock fishery and those taken by sea 
lions and a 54% overlap in the size taken by the Atka 
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Figure 3
Relative frequency histograms of the estimated fork length of walleye pollock consumed by Steller sea lions 
across seasons and years for rookeries and haul-outs. Fork lengths are predicted from corrected cranial struc-
tures in good and fair condition. Sample sizes for cranial elements (ne) and scats (ns) are provided. All winter 
sites are considered haul-out sites.
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Figure 4
Relative frequency histograms of the estimated fork length of Atka mackerel of 
consumed by Steller sea lions by season and year. Fork lengths are predicted from 
corrected cranial structures in good and fair condition. Sample sizes for cranial 
elements (ne) and scats (ns) are provided. All summer sites are rookeries and winter 
sites are haul-out sites. 
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mackerel fishery. In the summer the overlap in size of 
fish consumed by sea lions and the size of fish caught 
in the pollock fishery is 67% and there is a 51% overlap 
in the size of fish caught in the Atka mackerel fishery. 
When seasonal data were pooled, overlap between the 
size of fish caught in the commercial fishery and the 
size of fish consumed by sea lions was 68% for walleye 
pollock (Fig. 5A) and 53% for Atka mackerel (Fig. 5B). 

Discussion

Regression formulae

Regressions of cranial structure measurement on fish 
fork length with the use of multiple structures was 
an effective tool for estimating size of fish consumed 
by Steller sea lions. Sample sizes of measurable prey 

Figure 5
Relative frequency histograms of the estimated fork length of wall-
eye pollock and Atka mackerel consumed by Steller sea lions (SSL) 
compared with relative frequency histograms of fish caught by the 
walleye pollock and Atka mackerel commercial trawl fishery. 
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remains from scats were enhanced by using a number 
of cranial structures in addition to otoliths. Body size 
estimates of only 13.2% of the pollock and 6.9% of the 
Atka mackerel prey in this study were based on otoliths 
alone. Fork-length estimates can be considered accurate 
regardless of which structure was used in the estimate 
because all r2 values were high (range: 0.78−0.99). Like-
wise errors associated with the application of DCFs 
were consistent across structures (Tollit et al., 2004b, 
this issue). Confidence intervals around size estimates 
generally overlapped across structures; however, it was 
not surprising that different structures yielded slightly 
different mean sizes because different bones can origi-
nate from different scats.

The use of multiple cranial structures may also re-
duce bias resulting from variability in recovery and 
passage rates of structures from different species or 
sizes of fish (Pierce and Boyle, 1991; Browne et al., 
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2002; Tollit et al., 2003). Even after applying a DCF, 
the estimated mean size of walleye pollock based on 
otoliths was 10.9 cm smaller than the mean size esti-
mated by using all cranial structures. Because walleye 
pollock otoliths are relatively large and have a different 
composition than other cranial structures, the larger 
otoliths may be regurgitated, fully digested, or crushed 
by rocks in the stomach and not pass through in scat as 
readily as smaller otoliths or other cranial structures, 
thereby reducing their occurrence in scat and use in 
generating prey-size estimates. Atka mackerel otoliths 
are much smaller at older ages in relation to walleye 
pollock, which may explain why the size of prey esti-
mated from otoliths was similar to the size estimated 
from other cranial structures.

The use of DCFs for all structures, including otoliths, 
to account for erosion increased mean size estimates 
for both walleye pollock (33.1 vs. 39.3 cm FL) and Atka 
mackerel (30.7 vs. 32.3 cm FL). The relatively small 
increase in the corrected size of Atka mackerel re-
flects that the structures from this species were found 
in better condition than those from pollock (Table 2), 
as well as that correction factors were found to be 
species-, structure-, and condition-specific (Tollit et 
al., 2004b, this issue). Overall, our results emphasize 
the importance of using appropriate condition-specific 
DCFs. Other studies with captive sea lions have also 
demonstrated that grade-specific DCFs can reduce sys-
tematic error and increase precision of body mass es-
timates (Tollit et al. 1997). For walleye pollock, there 
was no significant difference in the degree of erosion 
across the three size ranges for each structure within 
each condition category (Tollit et al., 2004b, this issue). 
We assume the DCFs can be used for fish outside of 
this size range because the relative shape, structure, 
and proportion of the morphological features are con-
sistent for both smaller and larger fish (Tollit et al., 
2004b, this issue). Further research is necessary to 
test whether there are differences across the size range 
for Atka mackerel.

Size of walleye pollock and Atka mackerel consumed by 
Steller sea lions in the Bering Sea and Gulf of Alaska 

In general, Steller sea lions on summer rookery and 
winter haul-out sites consumed primarily subadult and 
adult-size walleye pollock and Atka mackerel year-round 
in 1998−2000. Steller sea lions typically forage near 
shore, in shallow water (<50 m) and at night (Raum-
Suryan et al., 2002; Loughlin et al., 2003). Likewise, 
adult walleye pollock migrate vertically to shallower 
depths during the night (Smith, 1981). Adult-size Atka 
mackerel also are commonly found in nearshore coastal 
areas during their spawning season (Zolotov, 1993). 

Juvenile walleye pollock were found in relatively high 
numbers only in scats collected on summer haul-out 
sites. Scats collected from summer haul-out sites likely 
represent a larger proportion of juvenile Steller sea li-
ons than those collected on summer rookery or winter 
haul-out sites. Previous studies indicate that juvenile 

sea lions (<4 years old) consume smaller walleye pollock 
than adult sea lions (Pitcher, 1981; Frost and Lowry, 
1986; Merrick and Calkins, 1996). Juvenile walleye pol-
lock are often found at shallow depths in bays and near 
shore habitat (Smith, 1981). Likewise, Loughlin et al. 
(2003) reported that juvenile Steller sea lions are typi-
cally shallow divers and frequently make short range 
foraging trips (<15 km). Additional scat collections on 
summer haul-out sites are necessary to determine more 
conclusively prey-size selectivity for juvenile Steller sea 
lions.

Annual changes in the size-frequency distribution of 
Atka mackerel consumed by Steller sea lions followed 
changes in the size distribution of Atka mackerel re-
sulting from exceptionally strong year classes. Merrick 
and Calkins (1996) also showed that the size of prey 
consumed by Steller sea lions can reflect the size dis-
tribution of the fish population. From the mid-1990s on, 
only 1999 was a strong recruitment year for walleye 
pollock in the Gulf of Alaska (Dorn et al., 2001), but we 
did not find a significantly greater proportion of juvenile 
fish eaten by Steller sea lions in 2000 than in 1999 or 
1998 perhaps because sufficient numbers of larger size 
fish were available in regions where walleye pollock 
were consumed. 

Historical studies of Steller sea lion prey size have 
primarily been based on measurements of walleye pol-
lock otoliths found in stomach samples but often with-
out application of correction factors for erosion (Pitcher, 
1981; Merrick and Calkins, 1996; Calkins, 1998). Prey-
size estimates based on stomach contents will likely 
differ from estimates derived from scats because of 
differences in digestion rates and breakage (Jobling and 
Breiby, 1986). However, results of studies examining 
the variability in prey size with sample type are vari-
able. Sinclair et al. (1996) suggested that in northern 
fur seals (Callorhinus ursinus), another otariid, small 
otoliths tend to flush through the digestive system more 
quickly than larger ones, resulting in a possible bias in 
scats towards smaller otoliths. In contrast, experiments 
with captive sea lions have shown that smaller otoliths 
are recovered in lower relative frequencies than are 
larger ones (Tollit et al., 1997). Frost and Lowry (1980) 
found no significant difference between the size of oto-
liths obtained from stomach and intestines of ribbon 
seals. Overall, we believe useful comparisons of prey 
size consumed by Steller sea lions can be made between 
our study and earlier studies.

Steller sea lions have been reported to consume a 
wide size range of walleye pollock. However, in most 
prior studies a larger proportion of juvenile fish were 
found than what we estimated from scats. Otoliths from 
stomach samples collected from 1975 to 1978 in the 
Gulf of Alaska contained primarily juvenile age pollock 
(mean FL=29.8cm; SD= 11.6; Pitcher, 1981). Undigested 
otoliths from stomach samples collected between 1975 
and 1981 in the Bering Sea also contained mostly juve-
nile fish (mean FL=29.3 cm) but had a distinct mode of 
adult-size pollock (48 cm FL; Frost and Lowry, 1986). 
Likewise, 43 stomach samples collected between 1985 
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and 1986 in the central Gulf of Alaska contained pri-
marily juveniles (mean FL=25.4 cm; SD=12.4) and had 
a weak mode of adult-size fish (39−43 cm; Merrick and 
Calkins, 1996; Calkins and Goodwin1). Mostly adult-size 
fish were found in stomachs recovered from Steller sea 
lions caught in trawl nets in the central Gulf of Alaska 
(1983–84; Loughlin and Nelson, 1986) and in stomach 
samples collected from 1994 to 1995 in Japanese waters 
(Goto and Shimazaki, 1998). However, in both these 
studies the samples of prey size may have been biased 
by the selectivity of the fishing gear for larger fish.

Using identical methods to those of our study, Tollit 
et al. (2004a, this issue) estimated the size of wall-
eye pollock consumed by the eastern stock of Steller 
sea lions between 1994 and 1999. The average size of 
walleye pollock consumed, estimated from all grade-
corrected structures (mean=42.4 cm; SD=11.6), was 
similar to the average size found in our study of the 
western stock of Steller sea lions. Furthermore, Tollit 
et al. (2004a, this issue) also found a greater occur-
rence of adult pollock in scats collected on rookery sites 
than from scats collected on haul-out sites. However, 
Steller sea lions from the western stock consumed a 
greater proportion of juvenile and adolescent fish and 
less adult fish than those from the eastern stock dur-
ing summer (June−July) and similar-size fish were 
consumed on haul-out sites in winter (March) in both 
regions. Neither study indicated the high occurrence 
of juvenile walleye pollock reported in the 1970s and 
1980s. The greater occurrence of juvenile walleye pol-
lock in historical studies may be a result of prey avail-
ability or differences in sampling methods.

By examining the relative size-frequency distributions 
of prey selected by Steller sea lions and those taken 
in the commercial trawl fishery, we found considerable 
overlap (68% walleye pollock and 53% Atka mackerel). 
Likewise, high levels of potential overlap in size were 
found between walleye pollock selected by Steller sea 
lions from the eastern stock and caught by the small 
commercial fishery bordering Southeast Alaska (Tollit 
et al., 2004a, this issue). The extent of overlap through-
out the range of Steller sea lions between the size of 
prey consumed by sea lions and the size of fish targeted 
and taken by the pollock and Atka mackerel trawl fish-
eries could result in competition between fisheries and 
foraging sea lions if resources are limited. 

Acknowledgments 

Fish specimens for the regression equations were pro-
vided by the National Marine Fisheries Service, the 
University of Victoria, and the University of British 
Columbia bone reference collections. Fish remains were 
identified by Pacific Identifications, Victoria, BC. We 
thank J. Laake, A. York, and R. Joy for statistical advice, 
K. Chumbley, E. Sinclair, and S. Crockford for help in 
initiating the study, A. Browne and M. Wilson for wall-
eye pollock otolith data, and S. Heaslip for graphics and 
laboratory assistance. Reviews by E. Sinclair, S. Melin, 

W. Walker, B. Robson, and three anonymous reviewers 
greatly improved this manuscript. 

Literature cited 

Browne, P., J. L. Laake, and R. L. DeLong. 
2002. Improving pinniped diet analyses through iden- 

tification of multiple skeletal elements in fecal sam- 
ples. Fish. Bull. 100:423−433.

Calkins, D. G. 
1998. Prey of Steller sea lions in the Bering Sea. Biosph. 

Cons. 1(1):33−44.
Casteel, R. W. 

1976. Fish remains in archaeology and paleo-environ-
mental studies, 180 p. Acad. Press, London. 

Desse, J., and N. Desse-Berset, 
1996. On the boundaries of osteometry applied to 

fish. Archaeofauna 5:171−179.
Dellinger, T., and F. Trillmich. 

1988. Estimating diet composition from scat analysis in 
otariid: is it reliable? Can. J. Zool. 66:1865−1870.

Dorn, M., A. Hollowed, E. Brown, B. Megrey, C. Wilson, and  
J. Blackburn.

2001. Assessment of the walleye pollock stock in the Gulf 
of Alaska. In Stock assessment and fishery evaluation 
report for the groundfish resources of the Gulf of Alaska, 
90 p. Prepared by the Gulf of Alaska Groundfish Plan 
Team, North Pacific Fishery Management Council, W 
4th Avenue, Suite 306, Anchorage, Alaska 99501.

Frost, K. J., and L. F. Lowry. 
1980. Feeding of ribbon seals (Phoca fasciata) in the 

Bering Sea in spring. Can. J. Zool. 58:1601−1607.
1981. Trophic importance of some marine gadids in 

Northern Alaska and their body-otolith size relation-
ships. Fish. Bull. 84:192−197.

1986. Sizes of walleye pollock, Theragra chalcogramma, 
consumed by marine mammals in the Bering Sea. Fish 
Bull. 79:187−192.

Goto, Y., and K. Shimazaki. 
1998. Diet of Steller sea lions off the Coast of Rausu, 

Hokkaido, Japan. Biosph. Cons. 1(2):141−148.
Härkönen, T.

1986. Guide to the otoliths of the bony fishes of the 
northeast Atlantic, 256 p. Danbiu Aps. Hellerup,  
Denmark.

Harvey, J. T. 
1989. Assesment of errors associated with harbor seal 

(Phoca vitulina) fecal sampling. J. Zool. (London) 219: 
101−111.

Harvey, J. T., Loughlin, T. R., Perez, M. A., and D. S. Oxman. 
2000. Relationship between fish size and otolith length 

for 63 species of fishes from the eastern north Pacific 
Ocean, 36 p. NOAA Tech. Rep. NMFS 150.

Hunt., G. L., Jr., A. S. Kitaysky, M. B. Decker, D. E. Dragoo, 
and A. M. Springer.

1996. Changes in the distribution and size of juvenile 
walleye pollock, Theragra chalcogramma, as indicated  
by seabird diets at the Pribilof Islands and by bottom 
trawl surveys in the Eastern Bering Sea, 1975 to 
1993. In Ecology of juvenile walleye pollock, Theragra 
chalcogramma. Papers from the workshop “The impor-
tance of prerecruit walleye pollock to the Bering Sea and 
North Pacific ecosystems” Seattle, WA, October 28−30, 
1993 (R. D. Brodeur, P. A. Livingston, T. R. Loughlin, 



520 Fishery Bulletin 102(3)

and A. B. Hollowed, eds.), p. 125−139. NOAA Tech. 
Rep. NMFS 126. [NTIS no. PB97-155188.]

Jobling, M., and A. Breiby. 
1986. The use and abuse of fish otoliths in studies of feed-

ing habits of marine piscivores. Sarsia 71:265−274.
Keys, A. B. 

1928. The weight-length relation in fishes. Proceedings 
of the National Academy of Sciences of the USA 14 
(12):922−925.

Loughlin, T. R., and R. L. Merrick.
1989. Comparison of commercial harvest of walleye pol-

lock and northern sea lion abundance in the Bering Sea 
and Gulf of Alaska, p. 679 −700. In Proceedings of the 
international symposium on the biology and manage-
ment of walleye pollock, Nov. 14−16, 1988, Anchorage, 
Alaska. Alaska Sea Grant Report 89-1, Anchorage, 
AK .

Loughlin, T. R., and R. Nelson Jr. 
1986. Incidental mortality of northern sea lions in She-

likof Strait, Alaska. Mar. Mamm. Sci. 2:14−33.
Loughlin T. R., A. S. Perlov, and V. A. Vladimirov. 

1992. Range-wide survey and estimation of total num- 
ber of Steller sea lions in 1989. Mar. Mamm. Sci. 83(3): 
220−239.

Loughlin, T. R., J. T. Sterling, R. L. Merrick, J. L. Sease, and  
A. E. York. 

2003. Diving behavior of immature Steller sea lions 
(Eumetopias jubatus). Fish. Bull. 101:566−582. 

Loughlin, T. R., and A. E. York. 
2000. An accounting of the source of Steller sea lion 

mortality. Mar. Fish. Rev. 62(4):40−45.
Lowe, S. A., R. F. Reuter, and H. Zenger.

2001. Assessment of Bering Sea /Aleutian Island Atka 
mackerel. In Stock assessment and fishery evalua-
tion report for the groundfish resources of the Bering  
Sea /Aleutian Islands region, 44 p. Prepared by the 
Bering Sea and Aleutian Islands Groundfish Plan 
Team, North Pacific Fishery Management Council, W 
4th Avenue, Suite 306, Anchorage, Alaska 99501.

Manly, B. F. J. 
1997. Randomization, bootstrap and Monte Carlo methods 

in biology, 2nd ed., 399 p. Chapman and Hall, London; 
New York, NY.

McDermott, S. F., and S. A. Lowe. 
1997. The reproductive cycle and sexual maturity of Atka 

mackerel, Pleurogrammus monopterygius, in Alaska 
waters. Fish. Bull. 95:231−333. 

Merrick, R. L., and D. G. Calkins. 
1996. Importance of juvenile walleye pollock in the diet of 

Gulf of Alaska Steller sea lions. In Ecology of juvenile 
walleye pollock, Theragra chalcogramma (R. D. Brodeur, 
P. A. Livingston, T. R. Loughlin, and A. B. Hollowed, 
eds.), p. 153−166. NOAA Tech. Rep. NMFS 126.

NMFS (National Marine Fisheries Service).
2003. Fisheries of the United States, 2002. Current 

Fishery Statistics No. 2002, 126 p. Fisheries Statistics 
and Economics Division, Natl. Mar. Fish. Serv., Silver 
Spring, MD. 

NRC (National Research Council). 
1996. The Bering Sea ecosystem, 307 p. National Acad-

emy Press. Washington, D.C. 
Orchard, T. J. 

2001. The role of selected fish species in Aleut paleo-
diet. M.A. thesis, 228 p. Univ. Victoria, Victoria, BC.

Owen, J. F., and J. R. Merrick. 
1994. Analysis of coastal middens in south-eastern Aus-

tralia: Sizing of fish remains in holocene deposits. J. 
of Archaeol. Sci. 21:3−10.

Pierce, G. J., and P. R. Boyle. 
1991. A review of methods for diet analysis in piscivo-

rous marine mammals. Oceanogr. Mar. Biol. Annu. 
Rev. 29:409−486.

Pitcher, K. W. 
1981. Prey of the Steller sea lion, Eumetopias jubatus, 

in the Gulf of Alaska. Fish. Bull. 79:467−472.
Prime J. H., and P. S. Hammond. 

1987. Quantitative assessment of gray seal diet from 
fecal analysis. In Approaches to marine mammal 
energetics (A. C. Huntley, D. P. Costa, G. A. J. Worthy 
and M. A. Castellini, eds.) p. 165−181. Allen Press, 
Lawrence, KS. 

Raum-Suryan, K. L., K. W. Pitcher, D. G. Calkins, J. L. Sease, 
and T. R. Loughlin. 

2002. Dispersal, rookery fidelity, and metapopulation 
structure of Steller sea lions (Eumetopias jubatus) in an 
increasing and a decreasing population in Alaska. J. 
Mammal. 18(3):746−764.

Ringrose, T. J. 
1993. Bone counts and statistics: a critique. J. Archaeol. 

Sci. 20:121−157.
Sinclair, E. H., and T. K. Zeppelin. 

2002. Seasonal and spatial differences in diet in the west-
ern stock of Steller sea lions (Eumetopias jubatus). J. 
Mammal. 83(4):973−990. 

Sinclair, E. H., G. A. Antonelis, B. W. Robson, R. R. Ream, and 
T. R. Loughlin. 

1996. Northern fur seal, Callorhinus ursinus, predation 
on juvenile walleye pollock, Theragra chalcogramma. 
In Ecology of walleye pollock, Theragra chalcogramma 
(R. D. Brodeur, P. A. Livingston, T. R. Loughlin, and 
A. B. Hollowed, eds.) p. 167−178. NOAA Tech. Rep., 
NMFS-126.

Smith, G. B. 
1981. The biology of walleye pollock. In The eastern 

Bering Sea shelf: oceanography and resources, vol. 1 
(D. W. Hood and J. A. Calder, eds.) p. 527−552. Univ. 
Wash. Press, Seattle, WA.

Templemann, W., and H. J. Squires. 
1956. Relationship of otolith lengths and weights in the 

haddock, Melanogrammus aeglefinus (L.) to the rate 
of growth of the fish. J. Fish. Res. Board Can. 13: 
467−487.

Tollit, D. J., S. G. Heaslip, and A. W. Trites. 
2004a. Sizes of walleye pollock (Theragra chalcogramma) 

consumed by the eastern stock of Steller sea lions 
(Eumetopias jubatus) in Southeast Alaska from 1994 
to 1999. Fish. Bull. 102:522–532.

Tollit, D. J., S. G. Heaslip, T. K. Zeppelin, R. Joy, K. A. Call, 
and A. W. Trites. 

2004b. A method to improve size estimates of walleye 
pollock (Theragra chalcogramma) and Atka mackerel 
(Pleurogrammus monopterygius) consumed by pinnipeds: 
digestion correction factors applied to bones and otoliths 
recovered in scats. Fish. Bull. 102:498–508.

Tollit D. J., M. J. Steward, P. M. Thompson, G. J. Pierce,  
M. B. Santos, and S. Hughes. 

1997. Species and size differences in the digestion of 
otoliths and beaks: implications for estimates of pin-
niped diet composition. Can. J. Fish Aquat. Sci. 
54:105−119.



521Zeppelin et al.:  Sizes of walleye pollock and Atka mackerel consumed by Eumetopias jubatus

Tollit, D. J., M. Wong, A. J. Winship, D. A. S. Rosen, and  
A. W. Trites. 

2003. Quantifying errors associated with using prey 
skeletal structures from fecal samples to determine the 
diet of the Steller sea lion (Eumetopias jubatus). Mar. 
Mamm. Sci. 19(4):724−744.

Walline, P. D.
1983. Growth of larval and juvenile walleye pollock re- 

lated to year-class strength. Ph.D. diss., 144 p. Univ. 
Washington, Seattle, WA. 

Wise, M. H. 
1980. The use of fish vertebrae in scats for estimating prey 

size of otters and mink. J. Zool., Lond. 192:25−31.
Zolotov, O. G. 

1993. Notes on the reproductive biology of Pleurogram-
mus monopterygius in Kamchatkan waters. J. Ichthyol. 
33(4):25−37.


